Artigos de revistas sobre o tema "Sonochemical intensification"

Siga este link para ver outros tipos de publicações sobre o tema: Sonochemical intensification.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 25 melhores artigos de revistas para estudos sobre o assunto "Sonochemical intensification".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Gole, Vitthal L., e Parag R. Gogate. "Intensification of sonochemical degradation of chlorobenzene using additives". Desalination and Water Treatment 53, n.º 10 (21 de novembro de 2013): 2623–35. http://dx.doi.org/10.1080/19443994.2013.862743.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chakinala, Anand G., Parag R. Gogate, Arthur E. Burgess e David H. Bremner. "Intensification of hydroxyl radical production in sonochemical reactors". Ultrasonics Sonochemistry 14, n.º 5 (julho de 2007): 509–14. http://dx.doi.org/10.1016/j.ultsonch.2006.09.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ashokkumar, Muthupandian. "The relevance of bubble dynamics in ultrasonic/sonochemical processes". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de outubro de 2023): A193. http://dx.doi.org/10.1121/10.0023238.

Texto completo da fonte
Resumo:
Acoustic cavitation bubble dynamics has been extensively studied by physicists and mathematicians. Process intensification is primarily studied by chemical engineers. Chemists tend to focus on bubble dynamics in a multibubble field to optimize the physical and chemical forces generated during acoustic cavitation with an intention to maximise/intensify chemical processes. To achieve process intensification successfully a multidisciplinary approach is required. Our early work on multibubble cavitation unveiled various factors that contribute to process optimization. For example, while single bubble dynamics can estimate the maximum bubble temperatures, they may not be relevant to achieving higher chemical yield, which in turn depends on varus other factors such as average bubble temperatures, number of active cavitation bubbles, etc. Other factors critical for process intensification include the generation of a homogeneous cavitation field, control over mass transfer effects caused by bubble oscillations, reactor design, etc. The presentation will provide an overview on the relevance of single and multibubble bubble dynamics in ultrasonic/sonochemical processes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chavan, Vivek P., e Parag R. Gogate. "Intensification of Synthesis of Cumene Hydroperoxide Using Sonochemical Reactors". Industrial & Engineering Chemistry Research 50, n.º 22 (16 de novembro de 2011): 12433–38. http://dx.doi.org/10.1021/ie201098m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chavan, Vivek P., Anand V. Patwardhan e Parag R. Gogate. "Intensification of epoxidation of soybean oil using sonochemical reactors". Chemical Engineering and Processing: Process Intensification 54 (abril de 2012): 22–28. http://dx.doi.org/10.1016/j.cep.2012.01.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Sivasankar, Thirugnanasambandam, e Vijayanand S. Moholkar. "Mechanistic approach to intensification of sonochemical degradation of phenol". Chemical Engineering Journal 149, n.º 1-3 (1 de julho de 2009): 57–69. http://dx.doi.org/10.1016/j.cej.2008.10.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Guo, Weilin, Yahui Shi, Hongzhi Wang, Hua Yang e Guangyou Zhang. "Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride". Ultrasonics Sonochemistry 17, n.º 4 (abril de 2010): 680–84. http://dx.doi.org/10.1016/j.ultsonch.2010.01.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Moumeni, Ouarda, e Oualid Hamdaoui. "Intensification of sonochemical degradation of malachite green by bromide ions". Ultrasonics Sonochemistry 19, n.º 3 (maio de 2012): 404–9. http://dx.doi.org/10.1016/j.ultsonch.2011.08.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hao, Feifei, Weilin Guo, Anqi Wang, Yanqiu Leng e Helian Li. "Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant". Ultrasonics Sonochemistry 21, n.º 2 (março de 2014): 554–58. http://dx.doi.org/10.1016/j.ultsonch.2013.09.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Khokhawala, Ismail M., e Parag R. Gogate. "Intensification of sonochemical degradation of phenol using additives at pilot scale operation". Water Science and Technology 63, n.º 11 (1 de junho de 2011): 2547–52. http://dx.doi.org/10.2166/wst.2011.532.

Texto completo da fonte
Resumo:
The present work reports the use of sonochemical reactors for the degradation of phenol in the presence of additives with an objective of enhancing the rates of degradation at a pilot scale operation. Process intensification studies have been carried out using additives such as hydrogen peroxide (H2O2) (0.5–2.0 g/L), sodium chloride (0.5–1.5 g/L) and solid particles viz. cupric oxide (CuO) and titanium dioxide (TiO2) (0.5–2.5 g/L). Optimum concentration for H2O2 and sodium chloride has been observed beyond which no beneficial effects are obtained even with additional loadings. Maximum extent of degradation has been observed by using ultrasound/H2O2/CuO approach at a solid loading of 1.5 g/L followed by ultrasound/H2O2/TiO2 approach at a loading of 2.0 g/L. The obtained results at pilot scale operation in the current work are very important especially due to the fact that the majority of earlier studies are at laboratory scale which cannot provide the design related information for large scale operation as required scale up ratios are quite high adding a degree of uncertainty in the design. The novelty of the present work lies in the fact that it highlights successful application of sonochemical reactors for wastewater treatment at pilot scale operation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Li, Qi, Yongfeng Chang, Feng Xie e Wei Wang. "Intensification of sonochemical degradation of methylene blue by adding carbon tetrachloride". Arabian Journal of Chemistry 14, n.º 9 (setembro de 2021): 103311. http://dx.doi.org/10.1016/j.arabjc.2021.103311.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Pandi, Narsimha, Shirish H. Sonawane, Sarang P. Gumfekar, Anand Kishore Kola, Pramod H. Borse, Swapnil B. Ambade, Sripadh Guptha e Muthupandian Ashokkumar. "Electrochemical Performance of Starch-Polyaniline Nanocomposites Synthesized By Sonochemical Process Intensification". Journal of Renewable Materials 7, n.º 12 (2019): 1279–93. http://dx.doi.org/10.32604/jrm.2019.07609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Gole, Vitthal L., e Parag R. Gogate. "Intensification of Synthesis of Biodiesel from Nonedible Oils Using Sonochemical Reactors". Industrial & Engineering Chemistry Research 51, n.º 37 (27 de fevereiro de 2012): 11866–74. http://dx.doi.org/10.1021/ie2029442.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Gogate, P. R., S. Shaha e L. Csoka. "Intensification of cavitational activity in the sonochemical reactors using gaseous additives". Chemical Engineering Journal 239 (março de 2014): 364–72. http://dx.doi.org/10.1016/j.cej.2013.11.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gogate, Parag R., Sukti Mujumdar e Aniruddha B. Pandit. "Large-scale sonochemical reactors for process intensification: design and experimental validation". Journal of Chemical Technology & Biotechnology 78, n.º 6 (2003): 685–93. http://dx.doi.org/10.1002/jctb.697.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Gogate, P. R., S. Shaha e L. Csoka. "Intensification of cavitational activity using gases in different types of sonochemical reactors". Chemical Engineering Journal 262 (fevereiro de 2015): 1033–42. http://dx.doi.org/10.1016/j.cej.2014.10.074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Stoian, Daniel, Nicky Eshtiaghi, Jie Wu e Rajarathinam Parthasarathy. "Intensification of sonochemical reactions in solid-liquid systems under fully suspended condition". Chemical Engineering and Processing - Process Intensification 123 (janeiro de 2018): 34–44. http://dx.doi.org/10.1016/j.cep.2017.10.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ghodbane, Houria, e Oualid Hamdaoui. "Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride". Ultrasonics Sonochemistry 16, n.º 4 (abril de 2009): 455–61. http://dx.doi.org/10.1016/j.ultsonch.2008.12.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Gole, Vitthal L., e Parag R. Gogate. "Sonochemical degradation of chlorobenzene in the presence of additives". Water Science and Technology 69, n.º 4 (17 de dezembro de 2013): 882–88. http://dx.doi.org/10.2166/wst.2013.790.

Texto completo da fonte
Resumo:
The present work deals with establishing the pathway for the selection of additives for intensification of the sonolytic degradation of chlorobenzene. The degradation of chlorobenzene has been investigated in the presence of different additives such as CuO, TiO2, nano-TiO2 and NaCl. The reaction has been monitored in terms of the concentration of the parent pollutant as well as the extent of mineralization. The first-order kinetic rate constant for the removal of chlorobenzene has been evaluated for different loadings of additives. It has been observed that the extent of degradation and mineralization was maximum in the presence of nano-TiO2 and minimum in the presence of CuO. A three-step mechanism has been developed for the degradation of chlorobenzene based on the identification of intermediates. The removal of chloride from the benzene ring due to pyrolysis was the dominant mechanism with minimal contribution from the attack of hydroxyl radical present in the bulk of solution. The oxidation products also react subsequently with the hydroxyl radicals resulting in mineralization. The rate of mineralization has been quantified in terms of total organic carbon removal. The observed trends for the mineralization confirm that the extent of mineralization depends on the ease of generation of hydroxyl radicals.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Shriwas, Akshaykumar K., e Parag R. Gogate. "Intensification of Degradation of 2,4,6-Trichlorophenol Using Sonochemical Reactors: Understanding Mechanism and Scale-up Aspects". Industrial & Engineering Chemistry Research 50, n.º 16 (17 de agosto de 2011): 9601–8. http://dx.doi.org/10.1021/ie200817u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Gole, Vitthal L., e Parag R. Gogate. "A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors". Chemical Engineering and Processing: Process Intensification 53 (março de 2012): 1–9. http://dx.doi.org/10.1016/j.cep.2011.12.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Katekhaye, Shital N., e Parag R. Gogate. "Intensification of cavitational activity in sonochemical reactors using different additives: Efficacy assessment using a model reaction". Chemical Engineering and Processing: Process Intensification 50, n.º 1 (janeiro de 2011): 95–103. http://dx.doi.org/10.1016/j.cep.2010.12.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mishra, Kashyap P., e Parag R. Gogate. "Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L". Journal of Environmental Management 92, n.º 8 (agosto de 2011): 1972–77. http://dx.doi.org/10.1016/j.jenvman.2011.03.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Gavrila, Adina I., Anamaria Vartolomei, Ioan Calinescu, Mircea Vinatoru, Oana C. Parvulescu, Grigore Psenovschi, Petre Chipurici e Adrian Trifan. "Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals". Agronomy 14, n.º 5 (26 de abril de 2024): 903. http://dx.doi.org/10.3390/agronomy14050903.

Texto completo da fonte
Resumo:
As a renewable and sustainable resource, lignocellulosic biomass serves as a crucial raw material for the production of biofuels, biochemicals, and various value-added products. This paper aims to develop and optimize a mild alkaline treatment of sawdust assisted by ultrasound, along with enzymatic hydrolysis of the pretreated material. The alkaline sonochemical pretreatment emerged as the optimal approach to enhance the susceptibility of cellulose to subsequent enzymatic hydrolysis to improve the yield of reducing sugars. A comparative study was performed using various ultrasonic applicators (horn and bath) and conventional assisted alkaline pretreatment. The ultrasonic-assisted pretreatment revealed a higher delignification of 68% (horn) and 57% (bath) compared with conventional pretreatment. Processes were optimized using a statistical analysis based on a 23 factorial design. The ratios between sawdust and alkaline solution (RSL = 0.5–1.5 g/100 mL), US amplitude (A = 20–60%), and working temperature (t = 30–50 °C) were selected as process factors. The optimal operating conditions to maximize the reducing sugar yield (138.15 mg GE/gsubstrate) were found as follows: a solid/liquid ratio of RSL,opt = 1.25 g/100 mL, US amplitude of Aopt = 60%, and pretreatment temperature of topt = 50 °C. The overall outcomes clearly confirmed the intensification of delignification by ultrasound-assisted alkaline pretreatment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Gharat, Sandip H., e Parag R. Gogate. "Cavitation assisted intensification of biogas production: A review". Environmental Quality Management, 7 de abril de 2024. http://dx.doi.org/10.1002/tqem.22231.

Texto completo da fonte
Resumo:
AbstractIntensified cavitation‐assisted biogas production from sustainable feedstock has been discussed describing the working principles and governing mechanisms for intensification. Various methods of biogas production discussed in the work include activated sludge processes, membrane bioreactor (MBR), and processes involving methanogenic and sulfate‐reducing microorganisms. Design aspects of cavitational reactors (sonochemical and hydrodynamic cavitation) have been presented with detailed understanding into effect of several operational parameters, such as the biomass‐to‐water ratio, operating pressure, treatment duration, operating temperature, power dissipation, and so on. Selection of optimum parameters is crucial to improve the performance and observed intensification from such processes. The possible benefits in terms of applicability to various types of biomass, efficiency, higher yields, and energy‐saving as compared to the conventional production processes have been demonstrated. Overall, cavitation‐assisted techniques are very effective in increasing biogas production and have significant potential for commercial applications, which would result in significant cost savings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia