Literatura científica selecionada sobre o tema "Solid-State closing switch"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Solid-State closing switch".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Solid-State closing switch"
ZHANG, FEI, WEN YU, CHENGFANG LI, LINA SHI e XIAOWEI SUN. "IMPROVED SOLID-STATE DBD FOR PICOSECOND SWITCH". Modern Physics Letters B 19, n.º 09n10 (30 de abril de 2005): 459–68. http://dx.doi.org/10.1142/s0217984905008438.
Texto completo da fonteОрлов, А. П., П. И. Голяков, Ю. В. Власов e П. Б. Репин. "Комбинированный твердотельный замыкающий ключ для коммутации сильноточного импульса". Журнал технической физики 93, n.º 9 (2023): 1372. http://dx.doi.org/10.21883/jtf.2023.09.56225.136-23.
Texto completo da fonteOrlov, A. P., P. I. Golyakov, Yu V. Vlasov e P. B. Repin. "Combined Solid-State Closing Switch for High-Current Pulse Switching". Technical Physics 69, n.º 7 (julho de 2024): 2074–78. http://dx.doi.org/10.1134/s106378422407034x.
Texto completo da fontePodlesak, T. F., J. L. Carter e J. A. McMurray. "Demonstration of compact solid-state opening and closing switch utilizing GTOs in series". IEEE Transactions on Electron Devices 38, n.º 4 (abril de 1991): 706–11. http://dx.doi.org/10.1109/16.75193.
Texto completo da fonteZhang, Fei, Chengfang Li e Lina Shi. "Delayed breakdown diode and its optimal design for solid state picosecond closing switch". Optical and Quantum Electronics 36, n.º 15 (dezembro de 2004): 1253–61. http://dx.doi.org/10.1007/s11082-004-8311-7.
Texto completo da fonteZhuang, Longyu, Kai Zhu, Junfeng Rao e Jie Zhuang. "Solid-state Marx generator based on saturable pulse transformer and fast recovery diodes". Journal of Instrumentation 18, n.º 10 (1 de outubro de 2023): P10036. http://dx.doi.org/10.1088/1748-0221/18/10/p10036.
Texto completo da fonteChen, Wanjun, Chao Liu, Xuefeng Tang, Lunfei Lou, Wu Cheng, Qi Zhou, Zhaoji Li e Bo Zhang. "High Peak Current MOS Gate-Triggered Thyristor With Fast Turn-On Characteristics for Solid-State Closing Switch Applications". IEEE Electron Device Letters 37, n.º 2 (fevereiro de 2016): 205–8. http://dx.doi.org/10.1109/led.2015.2511182.
Texto completo da fonteHerrmann, Christopher S., Joseph Croman e Sergey V. Baryshev. "Computationally assessing diamond as an ultrafast pulse shaper for high-power ultrawideband radar". Frontiers in Carbon 2 (24 de agosto de 2023). http://dx.doi.org/10.3389/frcrb.2023.1230873.
Texto completo da fonteTeses / dissertações sobre o assunto "Solid-State closing switch"
Shahriari, Ejlal. "Commutateurs à semi-conducteurs rapides et à courant élevé pour les applications de puissance pulsée". Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04818494.
Texto completo da fonteMicro-second range high-current pulses (100s kA) are applied to generate megagauss-range magnetic fields. This high pulsed power technology has been employed in inertial fusion research, X-pinch, and high-energy-density physics. Moreover, a number of industrial applications such as magnetic pulse welding and rock fracturing require high average power, repeatability, and a reliable high-current pulse generator with a long lifespan. Hence, a fast solid-state switch development operating in the range of several hundred kA is of considerable importance.A fast high-current switch is one of the most complex components in a pulsed power generator. Historically, only gas-filled switches could operate under such extreme conditions. However, gas-filled switches have several well-known disadvantages, including low pulse repetition frequency, short lifetimes, and instability in triggering. They are also expensive to use, often requiring gas flow systems, costly gases, and recirculating chambers of gas for repetitive operation. These disadvantages have hindered the widespread adoption of pulsed power technologies.Recent advancements in semiconductor physics and technology have introduced solid-state switches into the pulsed power domain. In particular, silicon high-voltage structures triggered in impact-ionization wave mode present a promising solution for fast high-current solid-state switches (10s-100s kA and 10s kA/μs).The main goal of this thesis is to experimentally demonstrate the capability of high-voltage thyristors to switch fast-high current pulses. to accomplish this goal, two major axes of study are defined as the experimental and theoretical studies. In the experimental work, the main focus is determined based on a key limitation highlighted in the literature, i.e., the cross-sectional area of the thyristor. To eliminate this limitation several solutions have been investigated in this thesis including (i) triggering the largest commercially available thyristor, 100 mm wafer diameter with 5.2 kV static voltage breakdown. (ii) Parallel triggering of an assembly of two and four high-voltage thyristors. (iii) Series-parallel configuration in order to further increase blocking voltage and current capability of the switch simultaneously. In terms of theoretical study, the numerical simulation is conducted to shed light on the avalanche breakdown phenomena in impact-ionization switching mode
Trabalhos de conferências sobre o assunto "Solid-State closing switch"
Bower, S., K. Cook, R. Keyse e F. J. Jones. "0.5-mA vacuum closing switch". In Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, editado por W. Howard Lowdermilk. SPIE, 1999. http://dx.doi.org/10.1117/12.354231.
Texto completo da fonteWelleman, A., S. Gekenidis e R. Leutwyler. "High power reverse conducting solid state closing switch for environmental applications". In IET European Conference on European Pulsed Power 2009. Incorporating the CERN Klystron Modulator Workshop. IET, 2009. http://dx.doi.org/10.1049/cp.2009.1651.
Texto completo da fonteAllafi, Amer L., Premjeet Chahal, Ranjan Mukherjee e Hassan K. Khalil. "A Control Strategy for Eliminating Bouncing in RF MEMS Switches". In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9702.
Texto completo da fonteWelleman, A., e S. Gekenidis. "12.6 kA / 20 kV / 300 Hz reverse conducting solid state closing switch for De-NOx / De-SOx modulator". In 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386219.
Texto completo da fonteHarling, Henry E. "Design of an Automatic Waterhammer Prevention System". In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57405.
Texto completo da fonteYang, Bozhi, e Qiao Lin. "Latchable Phase-Change Actuators for Micro Flow Control Applications". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81964.
Texto completo da fonte