Artigos de revistas sobre o tema "Solid electrode Interface"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Solid electrode Interface".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Aharon, Hannah, Omer Shavit, Matan Galanty e Adi Salomon. "Second Harmonic Generation for Moisture Monitoring in Dimethoxyethane at a Gold-Solvent Interface Using Plasmonic Structures". Nanomaterials 9, n.º 12 (16 de dezembro de 2019): 1788. http://dx.doi.org/10.3390/nano9121788.
Texto completo da fonteSuzuki, Tatsumi, Chengchao Zhong, Keiji Shimoda, Ken'ichi Okazaki e Yuki Orikasa. "(Digital Presentation) Electrochemical Impedance Analysis of Three-Electrode Cell with Solid Electrolyte/Liquid Electrolyte Interface". ECS Meeting Abstracts MA2023-02, n.º 8 (22 de dezembro de 2023): 3369. http://dx.doi.org/10.1149/ma2023-0283369mtgabs.
Texto completo da fonteLenser, Christian, Alexander Schwiers, Denise Ramler e Norbert H. Menzler. "Investigation of the Electrode-Electrolyte Interfaces in Solid Oxide Cells". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 262. http://dx.doi.org/10.1149/ma2023-0154262mtgabs.
Texto completo da fonteMukhan, Orynbassar, Ji-Su Yun e Sung-soo Kim. "Investigation of Interfacial Behavior of Ni-Rich NCM Cathode Particles in Sulfide-Based Solid-State Electrolyte". ECS Meeting Abstracts MA2023-02, n.º 60 (22 de dezembro de 2023): 2892. http://dx.doi.org/10.1149/ma2023-02602892mtgabs.
Texto completo da fonteMarbella, Lauren, Wesley Chang, Richard May, Michael Wang, Jeff Sakamoto e Daniel A. Steingart. "Combining Operando Techniques to Probe Chemo-Mechanical Evolution at Buried Solid/Solid Interfaces". ECS Meeting Abstracts MA2022-01, n.º 37 (7 de julho de 2022): 1636. http://dx.doi.org/10.1149/ma2022-01371636mtgabs.
Texto completo da fonteIl’ina, Evgeniya, Svetlana Pershina, Boris Antonov e Alexander Pankratov. "Impact of Li3BO3 Addition on Solid Electrode-Solid Electrolyte Interface in All-Solid-State Batteries". Materials 14, n.º 22 (22 de novembro de 2021): 7099. http://dx.doi.org/10.3390/ma14227099.
Texto completo da fonteLenser, Christian, Alexander Schwiers, Denise Ramler e Norbert H. Menzler. "Investigation of the Electrode-Electrolyte Interfaces in Solid Oxide Cells". ECS Transactions 111, n.º 6 (19 de maio de 2023): 1699–707. http://dx.doi.org/10.1149/11106.1699ecst.
Texto completo da fonteTan, Feihu, Hua An, Ning Li, Jun Du e Zhengchun Peng. "Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer". Nanomaterials 11, n.º 4 (12 de abril de 2021): 989. http://dx.doi.org/10.3390/nano11040989.
Texto completo da fonteCrumlin, Ethan J. "(Invited) Using Ambient Pressure XPS to Probe the Solid/Gas and Solid/Liquid Interface Under in Situ and Operando Conditions". ECS Meeting Abstracts MA2022-02, n.º 46 (9 de outubro de 2022): 1715. http://dx.doi.org/10.1149/ma2022-02461715mtgabs.
Texto completo da fonteHu, Jia-Mian, Linyun Liang, Yanzhou Ji, Liang Hong, Kirk Gerdes e Long-Qing Chen. "Interdiffusion across solid electrolyte-electrode interface". Applied Physics Letters 104, n.º 21 (26 de maio de 2014): 213907. http://dx.doi.org/10.1063/1.4879835.
Texto completo da fonteKucinskis, Gints, Beate Kruze, Prasad Korde, Anatolijs Sarakovskis, Arturs Viksna, Julija Hodakovska e Gunars Bajars. "Enhanced Electrochemical Properties of Na0.67MnO2 Cathode for Na-Ion Batteries Prepared with Novel Tetrabutylammonium Alginate Binder". Batteries 8, n.º 1 (14 de janeiro de 2022): 6. http://dx.doi.org/10.3390/batteries8010006.
Texto completo da fonteLarson, Karl, Eric A. Carmona e Paul Albertus. "High Areal Capacity Cycling of Three-Electrode Sodium/NBA/Sodium Cells". ECS Meeting Abstracts MA2023-02, n.º 5 (22 de dezembro de 2023): 851. http://dx.doi.org/10.1149/ma2023-025851mtgabs.
Texto completo da fonteZou, Junyan, e Teng Ben. "Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries". Polymers 14, n.º 22 (8 de novembro de 2022): 4804. http://dx.doi.org/10.3390/polym14224804.
Texto completo da fonteCucinotta, Clotilde S. "(Invited) Towards a Realistic Modelling of Solid-Liquid Interfaces". ECS Meeting Abstracts MA2023-01, n.º 30 (28 de agosto de 2023): 1806. http://dx.doi.org/10.1149/ma2023-01301806mtgabs.
Texto completo da fonteLaguna-Bercero, Miguel A. "Degradation Issues in Solid Oxide Electrolysers". ECS Meeting Abstracts MA2023-02, n.º 46 (22 de dezembro de 2023): 2234. http://dx.doi.org/10.1149/ma2023-02462234mtgabs.
Texto completo da fonteCrumlin, Ethan J. "(Invited) Probing Electrolysis Interfacial Chemistry: From Well-Defined to Complex Interfaces Under in Situ and Operando Conditions Using Ambient Pressure XPS". ECS Meeting Abstracts MA2024-01, n.º 35 (9 de agosto de 2024): 1978. http://dx.doi.org/10.1149/ma2024-01351978mtgabs.
Texto completo da fonteOuyang, Zhufeng, Anna Sciazko, Yosuke Komatsu, Nishimura Katsuhiko e Naoki Shikazono. "Effects of Transition Metal Elements on Ni Migration in Solid Oxide Cell Fuel Electrodes". ECS Transactions 111, n.º 6 (19 de maio de 2023): 171–79. http://dx.doi.org/10.1149/11106.0171ecst.
Texto completo da fonteLaguna-Bercero, M. A., H. Monzón, A. Larrea e V. M. Orera. "Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode". Journal of Materials Chemistry A 4, n.º 4 (2016): 1446–53. http://dx.doi.org/10.1039/c5ta08531d.
Texto completo da fonteZhang, Yingjie. "(Invited) Molecular Imaging of the Local Solvation, Nucleation and Growth Processes at Electrode-Electrolyte Interfaces". ECS Meeting Abstracts MA2023-02, n.º 60 (22 de dezembro de 2023): 2904. http://dx.doi.org/10.1149/ma2023-02602904mtgabs.
Texto completo da fonteJi, Yanzhou, Seyed Amin Nabavizadeh, Qisheng Wu, Yue Qi e Long-Qing Chen. "A Diffuse-Interface Description of Electron Tunneling across Solid Electrolyte Interphases". ECS Meeting Abstracts MA2023-01, n.º 45 (28 de agosto de 2023): 2484. http://dx.doi.org/10.1149/ma2023-01452484mtgabs.
Texto completo da fonteLeskes, Michal. "(Invited) Elucidating the Structure and Function of the Electrode-Electrolyte Interface By New Solid State NMR Approaches". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julho de 2022): 369. http://dx.doi.org/10.1149/ma2022-012369mtgabs.
Texto completo da fonteWu, Xi, Xinghua Liang, Xiaofeng Zhang, Lingxiao Lan, Suo Li e Qixin Gai. "Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery". Journal of Advanced Ceramics 10, n.º 2 (6 de fevereiro de 2021): 347–54. http://dx.doi.org/10.1007/s40145-020-0447-9.
Texto completo da fonteWu, Wei, Congjian Wang, Wenjuan Bian e Dong Ding. "Root Cause Analysis of Degradation in Protonic Ceramic Electrochemical Cells with Interfacial Electrical Sensors". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 332. http://dx.doi.org/10.1149/ma2023-0154332mtgabs.
Texto completo da fonteChen, Kongfa, Junji Hyodo, Aaron Dodd, Na Ai, Tatsumi Ishihara, Li Jian e San Ping Jiang. "Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells". Faraday Discussions 182 (2015): 457–76. http://dx.doi.org/10.1039/c5fd00010f.
Texto completo da fonteChatterjee, Debanjali, Kaustubh Girish Naik, Bairav Sabarish Vishnugopi e Partha P. Mukherjee. "Mechanics-Coupled Interface Kinetics in Solid-State Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 632. http://dx.doi.org/10.1149/ma2023-024632mtgabs.
Texto completo da fonteDivya, Velpula, e M. V. Sangaranarayanan. "Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces". Electrochemical Energy Technology 4, n.º 1 (28 de abril de 2018): 6–20. http://dx.doi.org/10.1515/eetech-2018-0002.
Texto completo da fonteLe, Jia-Bo, Qi-Yuan Fan, Jie-Qiong Li e Jun Cheng. "Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface". Science Advances 6, n.º 41 (outubro de 2020): eabb1219. http://dx.doi.org/10.1126/sciadv.abb1219.
Texto completo da fonteErs, Heigo, Liis Siinor e Piret Pikma. "The Puzzling Processes at Electrode | Ionic Liquid Interface". ECS Meeting Abstracts MA2022-02, n.º 60 (9 de outubro de 2022): 2533. http://dx.doi.org/10.1149/ma2022-02602533mtgabs.
Texto completo da fonteMotheo, A. de J., R. M. P. Saldanha, R. de S. Neves, E. de Robertis e A. Sadkowski. "Characteristics of pyridine adsorption on Au(111) and Au(210) by EIS parameters fitting procedure". Eclética Química 28, n.º 2 (2003): 29–40. http://dx.doi.org/10.1590/s0100-46702003000200004.
Texto completo da fonteFan, Feng Ru. "(Invited) novel Charged Interfaces for Catalysis and Energy Conversion". ECS Meeting Abstracts MA2023-01, n.º 34 (28 de agosto de 2023): 1885. http://dx.doi.org/10.1149/ma2023-01341885mtgabs.
Texto completo da fonteFrankenberger, Martin, Madhav Singh, Alexander Dinter e Karl-Heinz Pettinger. "EIS Study on the Electrode-Separator Interface Lamination". Batteries 5, n.º 4 (17 de novembro de 2019): 71. http://dx.doi.org/10.3390/batteries5040071.
Texto completo da fonteMin, Yu-Jeong, Ga-Eun Lee e Heon-Cheol Shin. "Novel Symmetric Cell Design for Analyzing All-Solid-State Battery Electrode". ECS Meeting Abstracts MA2023-01, n.º 55 (28 de agosto de 2023): 2673. http://dx.doi.org/10.1149/ma2023-01552673mtgabs.
Texto completo da fontePark, Sangbaek. "Recent Advances in Interface Engineering for All-Solid-State Batteries". Ceramist 25, n.º 1 (31 de março de 2022): 104–21. http://dx.doi.org/10.31613/ceramist.2022.25.1.03.
Texto completo da fonteWu, Cheng-Wei, Guo-Feng Xie e Wu-Xing Zhou. "Frontiers of investigation on thermal transport in all-solid-state lithium-ion battery". Acta Physica Sinica 71, n.º 2 (2022): 026501. http://dx.doi.org/10.7498/aps.71.20211887.
Texto completo da fonteWang, Jing, Riwei Xu, Chengzhong Wang e Jinping Xiong. "Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries". Molecules 29, n.º 17 (4 de setembro de 2024): 4202. http://dx.doi.org/10.3390/molecules29174202.
Texto completo da fonteSharma, Shrishti, Gurpreet Kaur e Anshuman Dalvi. "Improving Interfaces in All-Solid-State Supercapacitors Using Polymer-Added Activated Carbon Electrodes". Batteries 9, n.º 2 (25 de janeiro de 2023): 81. http://dx.doi.org/10.3390/batteries9020081.
Texto completo da fonteYokokawa, Harumi, Natsuko Sakai, Teruhisa Horita, Katsuhiko Yamaji e M. E. Brito. "Electrolytes for Solid-Oxide Fuel Cells". MRS Bulletin 30, n.º 8 (agosto de 2005): 591–95. http://dx.doi.org/10.1557/mrs2005.166.
Texto completo da fonteLorenz, Oliver, Alexander Kühne, Martin Rudolph, Wahyu Diyatmika, Andrea Prager, Jürgen W. Gerlach, Jan Griebel et al. "Role of Reaction Intermediate Diffusion on the Performance of Platinum Electrodes in Solid Acid Fuel Cells". Catalysts 11, n.º 9 (31 de agosto de 2021): 1065. http://dx.doi.org/10.3390/catal11091065.
Texto completo da fonteLai, Chun Yan, Jing Jing Xu e Yong Feng Wei. "Study on the Solid Electrolyte Interface at the Surface of Anode Electrode in Li4Ti5O12/LiFePO4 Battery System". Advanced Materials Research 347-353 (outubro de 2011): 3522–26. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3522.
Texto completo da fonteMin, Jungki, Seongmin Bak, Yuxin Zhang, Mingyu Yuan, Nicholas Pietra, Joshua Russell, Dawei Xia et al. "Interfacial Phase Separation Governs the Chemomechanics of Polymer Electrolytes in High-Voltage, Solid-State Lithium Batteries". ECS Meeting Abstracts MA2024-01, n.º 5 (9 de agosto de 2024): 748. http://dx.doi.org/10.1149/ma2024-015748mtgabs.
Texto completo da fonteInada, Ryoji, Kohei Okuno, Shunsuke Kito, Tomohiro Tojo e Yoji Sakurai. "Properties of Lithium Trivanadate Film Electrodes Formed on Garnet-Type Oxide Solid Electrolyte by Aerosol Deposition". Materials 11, n.º 9 (1 de setembro de 2018): 1570. http://dx.doi.org/10.3390/ma11091570.
Texto completo da fonteYang, Guang, e Jagjit Nanda. "(Invited) Multiscale Interfacial Heterogeneity Explored by Advanced Spectroscopy and Imaging for Batteries Beyond Lithium-Ion". ECS Meeting Abstracts MA2023-01, n.º 46 (28 de agosto de 2023): 2496. http://dx.doi.org/10.1149/ma2023-01462496mtgabs.
Texto completo da fonteWinterhalder, Franziska Elisabeth, Yousef Alizad Farzin, Olivier Guillon, Andre Weber e Norbert H. Menzler. "Perovskite-Based Materials As Alternative Fuel Electrodes for Solid Oxide Electrolysis Cells (SOECs)". ECS Transactions 111, n.º 6 (19 de maio de 2023): 1115–23. http://dx.doi.org/10.1149/11106.1115ecst.
Texto completo da fonteNagao, Kenji, Yuka Nagata, Atsushi Sakuda, Akitoshi Hayashi, Minako Deguchi, Chie Hotehama, Hirofumi Tsukasaki et al. "A reversible oxygen redox reaction in bulk-type all-solid-state batteries". Science Advances 6, n.º 25 (junho de 2020): eaax7236. http://dx.doi.org/10.1126/sciadv.aax7236.
Texto completo da fonteMukherjee, Partha P., Bairav Sabarish Vishnugopi e Kaustubh Girish Naik. "(Keynote) Heterogeneities in Solid-State Battery Interfaces and Architectures". ECS Meeting Abstracts MA2023-01, n.º 25 (28 de agosto de 2023): 1639. http://dx.doi.org/10.1149/ma2023-01251639mtgabs.
Texto completo da fontePark, Beom-Kyeong, Qian Zhang, Peter W. Voorhees e Scott A. Barnett. "Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects". Energy & Environmental Science 12, n.º 10 (2019): 3053–62. http://dx.doi.org/10.1039/c9ee01664c.
Texto completo da fonteGuseynov, Rizvan M., Radzhab A. Radzhabov, Kheirulla M. Makhmudov e Ruslan K. Kelbikhanov. "INVESTIGATION OF ELECTROCHEMICAL CELL WITH REVERSIBLE ELECTRODE – SOL-ID ELECTROLYTE OR IONIC MELT INTERFACE BY LINEAR CURRENT AND LINEAR POTENTIAL SCANNING METHODS". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, n.º 4-5 (17 de abril de 2018): 57. http://dx.doi.org/10.6060/tcct.20186104-05.5574.
Texto completo da fonteAllen, Jan L., Bria A. Crear, Rishav Choudhury, Michael J. Wang, Dat T. Tran, Lin Ma, Philip M. Piccoli, Jeff Sakamoto e Jeff Wolfenstine. "Fast Li-Ion Conduction in Spinel-Structured Solids". Molecules 26, n.º 9 (30 de abril de 2021): 2625. http://dx.doi.org/10.3390/molecules26092625.
Texto completo da fonteWon, Eun-Seo, e Jong-Won Lee. "Biphasic Solid Electrolytes with Homogeneous Li-Ion Transport Pathway Enabled By Metal-Organic Frameworks". ECS Meeting Abstracts MA2022-01, n.º 55 (7 de julho de 2022): 2248. http://dx.doi.org/10.1149/ma2022-01552248mtgabs.
Texto completo da fonteSwain, Greg M., Alfred B. Anderson e John C. Angus. "Applications of Diamond Thin Films in Electrochemistry". MRS Bulletin 23, n.º 9 (setembro de 1998): 56–60. http://dx.doi.org/10.1557/s0883769400029389.
Texto completo da fonte