Literatura científica selecionada sobre o tema "Solar processes"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Solar processes".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Solar processes"

1

Mishra, Ashish, e Mukul Kumar. "Solar Dynamical Processes I". Advanced Journal of Graduate Research 3, n.º 1 (30 de janeiro de 2018): 47–61. http://dx.doi.org/10.21467/ajgr.3.1.47-61.

Texto completo da fonte
Resumo:
The article gives a concise overview of solar dynamical processes and their impacts on the space weather. This article is based on the observational and theoretical developments made during last few decades. The article begins with a brief discussion of the Sun and the solar interior, from the core to the solar corona. We discuss the solar magnetic field and provide some basic understanding of the solar dynamo model. The solar dynamical processes, the transient as well as the gradual, are the manifestations of the Sun’s magnetic field. Magnetic reconnection, as well as submergence and emergence of magnetic flux tubes, plays an important role in the solar activities. This article tries to cover a range of dynamical processes, including sunspots, solar prominences and bright points. We also discussed various models of the dynamical processes along with their properties and effect on other activities occurring on the Sun.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Atallah Aljubourya, Dheeaa Al Deen, Puganeshwary Palaniandy, Hamidi Bin Abdul Aziz e Shaik Feroz. "Comparative Study of Advanced Oxidation Processes to Treat Petroleum Wastewater". Hungarian Journal of Industry and Chemistry 43, n.º 2 (1 de outubro de 2015): 97–101. http://dx.doi.org/10.1515/hjic-2015-0016.

Texto completo da fonte
Resumo:
AbstractThis study was carried out to compare the performance of different oxidation processes, such as solar photo-Fenton reaction, solar photocatalysis by TiO2, and the combination of the two for the treatment of petroleum wastewater from Sohar Oil Refinery by a central composite design with response surface methodology. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and total organic carbon (TOC) reductions. Solar photocatalysis by the TiO2/Fenton method improved the performance of the photocatalyst at neutral pH for petroleum wastewater without the need to adjust the pH during this treatment. Under acidic conditions, the solar photo-Fenton process is more efficient than solar TiO2photocatalysis while it is less efficient under alkaline conditions. The TiO2dosage and pH are the two main factors that improved the TOC and COD reductions in the solar photocatalysis using combined TiO2/Fenton and the solar TiO2photocatalysis processes while the pH and H2O2concentration are the two key factors that affect the solar photo-Fenton process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mishra, Ashish, e Mukul Kumar. "Solar Dynamical Processes II". Advanced Journal of Graduate Research 6, n.º 1 (11 de fevereiro de 2019): 1–13. http://dx.doi.org/10.21467/ajgr.6.1.1-13.

Texto completo da fonte
Resumo:
The present article is the successor of Solar Dynamical Processes I. The previous article was focused on the Sun, its magnetic field with an emphasis on various dynamical processes occurring on the Sun, e.g. sunspots, prominence and bright points which in turn plays a fundamental role in regulating the space weather. This article is emphasized on the solar dynamical processes and develop an extensive understanding of the various phenomena involved in their origin. The article also covers various models and hypothesis put forward by pioneer scientists on the basis of their observation by space-borne and ground-based instruments. This article shade light over a wide range of dynamical processes e.g., solar flares, coronal mass ejections, solar jets and coronal holes. Solar jets, the small-scale transient activities are found to have association with the other transient activities (e.g., mini-flares and mini-filaments). Flares as well as the coronal mass ejections are responsible for releasing a large amount of high energy charged particles and magnetic flux into the interplanetary space, and are being considered as the main drivers of space weather.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Xu, Zhihua, Huidong Zang e Bin Hu. "Solar energy-conversion processes in organic solar cells". JOM 60, n.º 9 (setembro de 2008): 49–53. http://dx.doi.org/10.1007/s11837-008-0117-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Meier, Anton, e Aldo Steinfeld. "Solar Thermochemical Production of Fuels". Advances in Science and Technology 74 (outubro de 2010): 303–12. http://dx.doi.org/10.4028/www.scientific.net/ast.74.303.

Texto completo da fonte
Resumo:
High-temperature thermochemical processes efficiently convert concentrated solar energy into storable and transportable fuels. In the long run, H2O/CO2-splitting thermochemical cycles based on metal oxide redox reactions are developed to produce H2 and CO, which can be further processed to synthetic liquid fuels. In a transition period, carbonaceous feedstocks (fossil fuels, biomass, C-containing wastes) are solar-upgraded and transformed into valuable fuels via reforming, gasification and decomposition processes. The most promising solar thermochemical processes are discussed and the latest technological developments are summarized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Nakariakov, V. M., A. R. Inglis, I. V. Zimovets, C. Foullon, E. Verwichte, R. Sych e I. N. Myagkova. "Oscillatory processes in solar flares". Plasma Physics and Controlled Fusion 52, n.º 12 (15 de novembro de 2010): 124009. http://dx.doi.org/10.1088/0741-3335/52/12/124009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Duffie, John A., William A. Beckman e Jon McGowan. "Solar Engineering of Thermal Processes". American Journal of Physics 53, n.º 4 (abril de 1985): 382. http://dx.doi.org/10.1119/1.14178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tomozov, V. M. "Plasma Processes in Solar Flares". Symposium - International Astronomical Union 142 (1990): 355–64. http://dx.doi.org/10.1017/s0074180900088264.

Texto completo da fonte
Resumo:
A rationale is presented for a conception that appearance of flares in active regions is due to the interaction of large-scale convective elements. Such an interaction gives rise to shear motions in the vicinity of the inverse polarity line of the photospheric magnetic field which generate vortical motions leading to non-equilibrium state of the magnetic configuration. Modern concepts of manifestations of turbulent plasma processes are described in terms of theoretical models for solar flares. Plasma effects arising at propagation of electron beams and thermal fluxes in the solar atmosphere are considered. Their role in the interpretation of hard X-ray and type III radio bursts is pointed out. The role of the turbulent Stark effect for diagnostics of collective plasma processes in solar flares is emphasized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gorensek, Maximilian B., Claudio Corgnale, John A. Staser e John W. Weidner. "Solar Thermochemical Hydrogen (STCH) Processes". Electrochemical Society Interface 27, n.º 1 (2018): 53–56. http://dx.doi.org/10.1149/2.f05181if.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tomson, Teolan. "Transient processes of solar radiation". Theoretical and Applied Climatology 112, n.º 3-4 (10 de agosto de 2012): 403–8. http://dx.doi.org/10.1007/s00704-012-0742-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Solar processes"

1

Hassan, Ibrahim. "Solar energy conversion by photoelectrochemical processes". Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Stüwe, David [Verfasser], e Jan G. [Akademischer Betreuer] Korvink. "Inkjet processes for crystalline silicon solar cells". Freiburg : Universität, 2015. http://d-nb.info/1122646984/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kohn, Alexander Wolfe. "Modeling non-radiative processes in solar materials". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115806.

Texto completo da fonte
Resumo:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 89-102).
In this thesis, we investigate methods and systems for understanding the electronic properties of a variety of systems relevant to organic photovoltaics. The second chapter examines how to predict the radiative and non-radiative decay rates of a large family of naphthalene derivatives. Naphthalene is a common building block in many organic electronic devices and possesses complex photophysics that are difficult to capture. Principally using time-dependent density functional theory, we are able to reproduce the experimental rates and, moreover, the fluorescence quantum yield, quite accurately. The next chapter then goes into extensions of the methodology discussed and analyzed in the prior chapter. Anthracene derivatives used for transferring triplet energy between a quantum dot and rubrene phase are found to have varying impacts on the total transfer efficiency based on the triplet lifetime of the anthracene derivative. Most potently, significant spin-orbit coupling in some of the derivatives causes substantial deactivation. An additional family, BODIPY dyes, is also investigated. They are found to undergo internal conversion gated by an excited-state conformational change, suggesting this may be a common motif. The fourth and fifth chapters investigate different interfacial effects and their impacts on the energy levels of electrons and holes in disordered organic devices. They look at specific systems: the interface between three different donors, PPV, P3HT, PTB7, and PCBM. They find that the interface can both reduce and induce disorder in different systems and that full treatment of the electronic environment is important for capturing accurate results. The final chapter investigates the use of neural networks to predict optimal range-separation parameters for density functionals.
by Alexander Wolfe Kohn.
Ph. D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Singletary, Steven J. (Steven James) 1973. "Igneous processes of the early solar system". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/58444.

Texto completo da fonte
Resumo:
Thesis (Ph. D. in Geochemistry)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, February 2004.
Includes bibliographical references.
Experimental, petrographic and numerical methods are used to explore the igneous evolution of the early solar system. Chapters 1 and 2 detail the results of petrographic and experimental studies of a suite of primitive achondritic meteorites, the ureilites. The first chapter presents data that reveal correlations between mineral modal proportions and mineral chemistry that are used to guide experiments and models of ureilite petrogenesis. Chapter 2 details and applies the experimental results to describe ureilite petrogenesis as the result of progressive heating of a primitive carbon-rich body. The experiments place temperature and depth constraints on uteilite formation of 1100 to 13000C and 5 to 13 MPa - equivalent to the central pressure of an asteroid with a radius of 130 km. Chapter 3 reports the results of melting experiments of Allende carbonaceous chondrite at temperatures and pressures that would be expected on small bodies in the early solar system (up to 1300⁰C and 2.5 to 15 IPa) heated by decay of short lived isotopes. The results are then applied to ureilite petrogenesis and assembly of larger planetary bodies. The final chapter is an experimental study to test a hybridized source region for the high titanium lunar ultramafic glasses. Two models are presented that invoke either a heterogeneous source region or sinking and reaction of an ultramafic, titanium rich magma with underlying mantle regions.
by Steven J. Singletary.
Ph.D.in Geochemistry
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

DELL'ORTO, ELISA CAMILLA. "Dye sensitized solar cells: materials and processes". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28476.

Texto completo da fonte
Resumo:
During the thesis the DSSCs optimization was analyzed mainly through two strategies: the study of new sensitizers and the study of alternatives materials for photo-cathode fabrication. Two class of sensitizers were be analyzed: squaraine dyes and cyclometalated-based dyes. Then a study on dye-loading process will be presented, with implication in an industrialization process. For the photo-cathode fabrication two di erent materials were studied, a carbon based material and a polymeric material. Then a part of the work concerned the study of devices analysis system. In particular electrochemical impedance spectroscopy was studied to propose a new set up to analyze electric processes in different cell components.3
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Willes, Andrew James. "Coherent wave processes in solar and interplanetary plasmas". Thesis, The University of Sydney, 1996. https://hdl.handle.net/2123/27549.

Texto completo da fonte
Resumo:
This thesis treats two aspects of coherent wave emission processes in space plasmas. Part I is concerned with the process of second harmonic plasma emission, as applied to solar radio type III bursts. Part II details a theory for simultaneous multiple frequency bands observed in solar microwave spike bursts, based on the electron-cyclotron maser mechanism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Steinfeld, Jeffrey I. "High-flux solar photon processes: opportunities for applications". MIT Energy Lab, 1992. http://hdl.handle.net/1721.1/27220.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jiménez, López Jesús. "Analysis of the Different Kinetic Processes in Perovskite Solar Cells". Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668405.

Texto completo da fonte
Resumo:
L'energia fotovoltaica s'ha convertit en una de les alternatives més populars com a font d'energia renovable. Es basa en la transformació directa de radiació solar en electricitat. Es troba disponible a escala global i a més no necessita de cap transformador per convertir l'energia mecànica en energia elèctrica, el que fa que sigui fàcil d'implementar. Avui en dia, el material més utilitzat per a aplicacions fotovoltaiques segueix sent el silici. En canvi, el desenvolupament de noves tecnologies, més barates, fàcils de processar i que a més poden utilitzar-se en substrats flexibles, ha sorgit com a alternativa al silici. De totes elles, les perovskita basades en halurs de plom s'han convertit en una de les millors opcions per a la comunitat científica a causa de les excel·lents propietats fotovoltaiques que presenta. Tot i que les eficiències dels dispositius preparats amb perovskita han arribat al 25%, un valor que es troba molt proper al seu màxim teòric, els processos que tenen lloc en aquests dispositius encara no són del tot coneguts. En aquesta tesi es tracta d'obtenir informació sobre els processos dels transportadors de càrrega, des de com es generen fins a la recombinació, tant en les interfícies com a l'interior del propi material. Per això, s'han utilitzat diferents tècniques de caracterització avançades com el fotovoltatge transitori (TPV), la fotocorrent transitòria (TPC), l'extracció de càrrega (CE) i l’espectroscòpia d'absorció transitòria en l'escala del femtosegon (FSTA), obtenint importants conclusions sobre pèrdues i processos que afecten la recombinació de transportadors de càrrega que porten a pitjors eficiències
La energía fotovoltaica se ha convertido en una de las alternativas más populares como fuente de energía renovable. Se basa en la transformación directa de radiación solar en electricidad. Se encuentra disponible a escala global y además no precisa de ningún transformador para convertir la energía mecánica en energía eléctrica, lo que hace que sea fácil de implementar. Hoy en día, el material más utilizado para aplicaciones fotovoltaicas sigue siendo el silicio. En cambio, el desarrollo de nuevas tecnologías, más baratas, fáciles de procesar y que además pueden utilizarse en sustratos flexibles, ha surgido como alternativa al silicio. De todas ellas, las perovskitas basadas en haluros de plomo se han convertido en una de las mejores opciones para la comunidad científica debido a las excelentes propiedades fotovoltaicas que presenta. Aunque las eficiencias de los dispositivos preparados con perovskitas han alcanzado el 25%, un valor que se encuentra muy cercano a su máximo teórico, los procesos que tienen lugar en estos dispositivos aún no son del todo conocidos. En esta tesis se trata de obtener información acerca de los procesos de los transportadores de carga, desde cómo se generan hasta la recombinación, tanto en las interfaces como en el interior del propio material. Para ello, se han utilizado distintas técnicas de caracterización avanzadas como el fotovoltaje transitorio (TPV), fotocorriente transitoria (TPC), la extracción de carga (CE) y la espectrocopía de absorción transitoria en la escala del femtosegundo (fsTA), obteniendo importantes conclusiones sobre pérdidas
Photovoltaics have become one of the most popular renewable source of energy. Photovoltaic technologies transform sunlight into electricity, and they are also available worldwide, and they do not depend on the conversion of motive power, making this technology quite easy to implement. Nowadays, silicon is still the most used material for photovoltaics. Anyway, new photovoltaic technologies have emerged as alternatives to silicon, as they are cheaper, easier to process, and, they are possible to use on flexible substrates. Among them, lead halide perovskites have become one of the most popular choice in the scientific community, due to the great properties that this material presents. While efficiencies have risen above 25%, which is close to their maximum theoretical limit, there is still debate about the processes happening in the device. In this thesis, we try to gain insight into charge carrier processes from their generation to their recombination at both perovskite interfaces, and also in the bulk of the material. Using advanced characterization techniques, such as transient photovoltage (TPV), transient photocurrent (TPC), charge extraction (CE), and femtosecond transient absorption spectroscopy (fsTA) we obtained important findings about charge carrier losses, and artifacts affecting charge carrier recombination in functional devices that lead to lower power conversion efficiencies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Fitó, de la Cruz Jaume. "Solar-driven hybrid refrigeration systems based on thermochemical processes". Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461061.

Texto completo da fonte
Resumo:
Aquesta tesi doctoral proposa dos sistemes híbrids de refrigeració basats en energia solar en els quals l'element comú és un procés termoquímic: un sistema híbrid per absorció / termoquímic activat amb energia solar tèrmica de baixa temperatura (< 120 ºC), i un sistema híbrid per compressió / termoquímic activat amb energia solar fotovoltaica i calor residual. El sistema per absorció / termoquímic és presentat en la seva configuració més simple i els seus components i condicions són discutits. Les prestacions del cicle són estimades de forma preliminar amb alguns parells de treball basats en amoníac, essent NH3/NaSCN i el NH3/BaCl2 dos d'interessants. La simulació preliminar del sistema híbrid mostra que aquest augmenta la fracció solar. El sistema per compressió / termoquímic és definit i simulat en la fase d'acumulació de refrigerant assistida amb compressió. Un model de reacció quasi-estacionari de doble front, que pren en compte les limitacions de transferència de massa i de calor, és utilitzat per estudiar de forma preliminar la influència d'algunes condicions d'operació i paràmetres de disseny sobre la corba de reacció amb el parell amoníac / clorur de bari. S'ha construit un dispositiu experimental per a obtenir dades experimentals de la fase d'acumulació de refrigerant assistida amb compressió, i confrontar aquestes dades amb les prediccions obtingudes del model de reacció de doble front, amb l'objectiu d'ajustar alguns dels paràmetres del model. Es conclou que el model ajustat prediu la corba de reacció amb una exactitud acceptable per a gairebé tots els experiments, amb petites discrepàncies. S'espera que els sistemes híbrids proposats operin amb energia solar, siguin relativament compactes, emmagatzemin energia en menys volum d'emmagatzemament, i tinguin un petit grau d'autonomia (algunes hores dins d'un cicle d'operació diari). Aquests sistemes són interessants per a futurs estudis.
Esta tesis doctoral propone dos sistemas híbridos de refrigeración basados en energía solar donde el elemento común es un proceso termoquímico: un sistema híbrido absorción / termoquímico activado con energía solar térmica de baja temperatura (< 120 ºC), y un sistema híbrido compresión / termoquímico activado con energía solar fotovoltaica y calor residual. El sistema absorción / termoquímico es presentado en su configuración más simple y sus componentes y condiciones de operación discutidas. El desempeño del ciclo es estimado preliminarmente con algunos pares de trabajo con amoníaco, con NH3/NaSCN y NH3/BaCl2 como pares interesantes. La simulación preliminar del sistema híbrido muestra que este aumenta la fracción solar. El sistema compresión / termoquímico es definido y simulado en la fase de acumulación de refrigerante asistida con compresión. Un modelo de reacción cuasi-estacionario de doble frente, que tiene en cuenta limitaciones de transferencia de masa y de calor, es usado para estudiar preliminarmente la influencia de algunas condiciones de operación y parámetros de diseño sobre la curva de reacción con el par amoníaco / cloruro de bario. Se ha construido un dispositivo experimental para obtener datos experimentales de la fase de acumulación de refrigerante asistida con compresor, y confrontar estos datos con las predicciones obtenidas del modelo de reacción de doble frente, con el objetivo de ajustar algunos parámetros del modelo. Se concluye que el modelo ajustado predice la curva de reacción con exactitud aceptable para casi todos los experimentos, con pequeñas discrepancias. Se espera que los sistemas híbridos propuestos operen con energía solar, sean relativamente compactos, almacenen energía en menor volumen, y tengan un pequeño grado de autonomía (unas pocas horas en un ciclo de operación diario). Estos sistemas son interesantes para futuros estudios.
This doctoral thesis proposes two solar-based hybrid refrigeration systems where the central piece is a thermochemical process: an absorption / thermochemical hybrid system driven by low-grade solar thermal energy (< 120 ºC), and a compression / thermochemical hybrid refrigeration system driven by solar-PV energy and waste heat. The absorption / thermochemical hybrid system is presented in its most simple configuration, and its components and operating conditions discussed. A preliminary performance estimation is carried out with some ammonia-based working pairs finding the NH3/NaSCN and NH3/BaCl2 as interesting working pairs. A preliminary simulation of the hybrid system shows that it increases the solar coverage. The compression / thermochemical hybrid system is also defined and simulated in its refrigerant storage phase assisted with compression. A 2-front quasi-steady reaction model which accounts for heat and mass transfer limitations is used to preliminarily study the influence of some operating conditions and design parameters on the system’s reaction curve with the NH3/BaCl2 working pair. An experimental setup has been built to obtain experimental data from the compression-assisted refrigerant storage phase, and confront this data with the predictions obtained from the 2-front reaction model, with the objective of adjusting some parametres of the model. It is concluded that the adjusted model predicts the reaction curve with acceptable accuracy for almost all experiments, with small discrepancies. The proposed hybrid systems are expected to operate with solar energy, be relatively compact, store energy with reduced storage volume, and have a small degree of autonomy (a few hours within a daily operating cycle). These systems are promising for further study.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Vocks, Christian. "Electron kinetic processes in the solar corona and wind". Thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6525/.

Texto completo da fonte
Resumo:
The Sun is surrounded by a 10^6 K hot atmosphere, the corona. The corona and the solar wind are fully ionized, and therefore in the plasma state. Magnetic fields play an important role in a plasma, since they bind electrically charged particles to their field lines. EUV spectroscopes, like the SUMER instrument on-board the SOHO spacecraft, reveal a preferred heating of coronal ions and strong temperature anisotropies. Velocity distributions of electrons can be measured directly in the solar wind, e.g. with the 3DPlasma instrument on-board the WIND satellite. They show a thermal core, an anisotropic suprathermal halo, and an anti-solar, magnetic-field-aligned, beam or "strahl". For an understanding of the physical processes in the corona, an adequate description of the plasma is needed. Magnetohydrodynamics (MHD) treats the plasma simply as an electrically conductive fluid. Multi-fluid models consider e.g. protons and electrons as separate fluids. They enable a description of many macroscopic plasma processes. However, fluid models are based on the assumption of a plasma near thermodynamic equilibrium. But the solar corona is far away from this. Furthermore, fluid models cannot describe processes like the interaction with electromagnetic waves on a microscopic scale. Kinetic models, which are based on particle velocity distributions, do not show these limitations, and are therefore well-suited for an explanation of the observations listed above. For the simplest kinetic models, the mirror force in the interplanetary magnetic field focuses solar wind electrons into an extremely narrow beam, which is contradicted by observations. Therefore, a scattering mechanism must exist that counteracts the mirror force. In this thesis, a kinetic model for electrons in the solar corona and wind is presented that provides electron scattering by resonant interaction with whistler waves. The kinetic model reproduces the observed components of solar wind electron distributions, i.e. core, halo, and a "strahl" with finite width. But the model is not only applicable on the quiet Sun. The propagation of energetic electrons from a solar flare is studied, and it is found that scattering in the direction of propagation and energy diffusion influence the arrival times of flare electrons at Earth approximately to the same degree. In the corona, the interaction of electrons with whistler waves does not only lead to scattering, but also to the formation of a suprathermal halo, as it is observed in interplanetary space. This effect is studied both for the solar wind as well as the closed volume of a coronal magnetic loop. The result is of fundamental importance for solar-stellar relations. The quiet solar corona always produces suprathermal electrons. This process is closely related to coronal heating, and can therefore be expected in any hot stellar corona. In the second part of this thesis it is detailed how to calculate growth or damping rates of plasma waves from electron velocity distributions. The emission and propagation of electron cyclotron waves in the quiet solar corona, and that of whistler waves during solar flares, is studied. The latter can be observed as so-called fiber bursts in dynamic radio spectra, and the results are in good agreement with observed bursts.
Die Sonne ist von einer 10^6 K heißen Atmosphäre, der Korona, umgeben. Sie ist ebenso wie der Sonnenwind vollständig ionisiert, also ein Plasma. Magnetfelder spielen in einem Plasma eine wichtige Rolle, da sie elektrisch geladene Teilchen an ihre Feldlinien binden. EUV-Spektroskope, wie SUMER auf der Raumsonde SOHO, zeigen eine bevorzugte Heizung koronaler Ionen sowie starke Temperaturanisotropien. Geschwindigkeitsverteilung von Elektronen können im Sonnenwind direkt gemessen werden, z.B. mit dem 3DPlasma Instrument auf dem Satelliten WIND. Sie weisen einen thermischen Kern, einen isotropen suprathermischen Halo, sowie einen anti-solaren, magnetfeldparallelen Strahl auf. Zum Verständnis der physikalischen Prozesse in der Korona wird eine geeignete Beschreibung des Plasms benötigt. Die Magnetohydrodynamik (MHD) betrachtet das Plasma einfach als elektrisch leitfähige Flüssigkeit. Mehrflüssigkeitsmodelle behandeln z.B. Protonen und Elektronen als getrennte Fluide. Damit lassen sich viele makroskopische Vorgänge beschreiben. Fluidmodelle basieren aber auf der Annahme eines Plasmas nahe am thermodynamischen Gleichgewicht. Doch die Korona ist weit davon entfernt. Ferner ist es mit Fluidmodellen nicht möglich, Prozesse wie die Wechselwirkung mit elektromagnetischen Wellen mikroskopisch zu beschreiben. Kinetische Modelle, die Geschwindigkeitsverteilungen beschreiben, haben diese Einschränkungen nicht und sind deshalb geeignet, die oben genannten Messungen zu erklären. Bei den einfachsten Modellen bündelt die Spiegelkraft im interplanetaren Magnetfeld die Elektronen des Sonnenwinds in einen extrem engen Strahl, im Widerspruch zur Beobachtung. Daher muss es einen Streuprozess geben, der dem entgegenwirkt. In der vorliegenden Arbeit wird ein kinetisches Modell für Elektronen in der Korona und im Sonnenwind präsentiert, bei dem die Elektronen durch resonante Wechselwirkung mit Whistler-Wellen gestreut werden. Das kinetische Modell reproduziert die beobachteten Bestandteile von Elektronenverteilungen im Sonnenwind, d.h. Kern, Halo und einen Strahl endlicher Breite. Doch es ist nicht nur auf die ruhige Sonne anwendbar. Die Ausbreitung energetischer Elektronen eines solaren Flares wird untersucht und dabei festgestellt, dass Streuung in Ausbreitungsrichtung und Diffusion in Energie die Ankunftszeiten von Flare-Elektronen bei der Erde in etwa gleichem Maße beeinflussen. Die Wechselwirkung von Elektronen mit Whistlern führt in der Korona nicht nur zu Streuung, sondern auch zur Erzeugung eines suprathermischen Halos, wie er im interplanetaren Raum gemessen wird. Dieser Effekt wird sowohl im Sonnenwind als auch in einem geschlossenen koronalen Magnetfeldbogen untersucht. Das Ergebnis ist von fundamentaler Bedeutung für solar-stellare Beziehungen. Die ruhige Korona erzeugt stets suprathermische Elektronen. Dieser Prozeß ist eng mit der Koronaheizung verbunden, und daher in jeder heißen stellaren Korona zu erwarten. Im zweiten Teil der Arbeit wird beschrieben, wie sich aus der Geschwindigkeitsverteilung der Elektronen die Dämpfung oder Anregung von Plasmawellen berechnen lässt. Die Erzeugung und Ausbreitung von Elektronenzyklotronwellen in der ruhigen Korona und von Whistlern während solarer Flares wird untersucht. Letztere sind als sogenannte fiber bursts in dynamischen Radiospektren beobachtbar, und die Ergebnisse stimmen gut mit beobachteten Bursts überein.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Solar processes"

1

Ceccaroli, Bruno, Eivind Ovrelid e Sergio Pizzini, eds. Solar Silicon Processes. Boca Raton : Taylor & Francis, 2017. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Somov, Boris V. Physical Processes in Solar Flares. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2396-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Duffie, John A., e William A. Beckman. Solar Engineering of Thermal Processes. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118671603.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Duffie, John A. Solar engineering of thermal processes. 2a ed. New York: Wiley, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Duffie, John A. Solar engineering of thermal processes. 3a ed. Hoboken, NJ: Wiley, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Somov, B. V. Physical processes in solar flares. Dordrecht: Kluwer Academic Publishers, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gonzalez, Walter, e James L. Burch, eds. Key Processes in Solar-Terrestrial Physics. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1493-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Marov, Mikhail Ya, e Hans Rickman, eds. Collisional Processes in the Solar System. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0712-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

I͡Akovlevich, Marov Mikhail, e Rickman H, eds. Collisional processes in the solar system. Dordrecht: Kluwer Academic Publishers, 2001.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kalogirou, Soteris. Solar energy engineering: Processes and systems. Amsterdam: Elsevier/Academic Press, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Solar processes"

1

Ambastha, Ashok. "Solar Interior". In Heliophysical Processes, 15–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11341-3_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chaibi, M. T., e Ali M. El-Nashar. "Solar Thermal Processes". In Green Energy and Technology, 131–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01150-4_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gopalswamy, Natchimuthukonar. "Large-Scale Solar Eruptions". In Heliophysical Processes, 53–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11341-3_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kaushika, N. D., Anuradha Mishra e Anil K. Rai. "Mathematical Model of Transport Processes". In Solar Photovoltaics, 55–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72404-1_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Thomas, Nicolas. "Physical Processes Associated with Planetary Satellites". In Solar and Extra-Solar Planetary Systems, 173–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44807-1_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Brownlee, D. E. "Interstellar Grains in the Solar System". In Interstellar Processes, 513–30. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3861-8_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sako, Takashi. "Solar Energetic Particles: Acceleration and Observations". In Heliophysical Processes, 73–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11341-3_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mallik, P. C. V., J. C. Brown e A. L. MacKinnon. "Solar X-Ray Processes". In Magnetic Coupling between the Interior and Atmosphere of the Sun, 463–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02859-5_57.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ghasemzadeh, Kamran, Angelo Basile e Abbas Aghaeinejad-Meybodi. "Solar Membrane Reactor". In Integrated Membrane Systems and Processes, 307–41. Oxford, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118739167.ch12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Vahia, M. N. "Relationship between Solar Flares and Solar Cosmic Rays". In Basic Plasma Processes on the Sun, 415–19. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0667-9_72.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Solar processes"

1

Komitov, B. P., e V. I. Kaftan. "THE LOW IONOSPHERE AND TERRESTRIAL TECTONIC PROCESSES". In All-Russia Conference on Solar and Solar-Terrestrial Physics. The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 2022. http://dx.doi.org/10.31725/0552-5829-2022-161-164.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Eleftheratos, Kostas, Ioannis-Panagiotis Raptis, Dimitra Kouklaki, Stelios Kazadzis, Dimitra Founda, Basil Psiloglou, Panagiotis Kosmopoulos et al. "Atmospheric parameters affecting spectral solar irradiance and solar energy (ASPIRE)". In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0183678.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wieckert, Christian, Anton Meier e Aldo Steinfeld. "On Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes". In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1059.

Texto completo da fonte
Resumo:
A solar receiver-reactor concept for high-temperature thermochemical applications involving gas and condensed phases is presented. It features two cavities in series. The inner cavity is an enclosure, e.g. made of graphite, with a small aperture to let in concentrated solar power. It serves as the solar receiver, radiant absorber, and radiant emitter. The outer cavity is a well-insulated enclosure containing the inner cavity. It serves as the reaction chamber and is subjected to thermal radiation from the inner cavity. The advantages of such a two-cavity reactor concept are outlined. A radiation heat transfer analysis based on the radiosity enclosure theory is formulated and results are presented in the form of generic curves that indicate the design constraints. High energy absorption efficiency can be achieved by minimizing the aperture area, by maximizing the size of the inner cavity, and by constructing it from a material of high emissivity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kucera, T. A. "SOHO: Atomic physics and the solar atmosphere". In ATOMIC PROCESSES IN PLASMAS. ASCE, 1998. http://dx.doi.org/10.1063/1.56548.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Stein, Wes. "Collecting and Converting Photons for Thermal Processes". In Optics for Solar Energy. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ose.2014.rw3b.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fursyak, Yu A. "LARGE-SCALE ELECTRIC CURRENTS IN SOLAR CORONAL HEATING PROCESSES". In All-Russia Conference on Solar and Solar-Terrestrial Physics. The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 2022. http://dx.doi.org/10.31725/0552-5829-2022-283-286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Steiner, Oskar. "Photospheric processes and magnetic flux tubes". In KODAI SCHOOL ON SOLAR PHYSICS. AIP, 2007. http://dx.doi.org/10.1063/1.2756784.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cravens, T. E. "X-Ray Emission in the Solar System". In ATOMIC PROCESSES AND PLASMAS: 13th APS Topical Conference on Atomic Processes in Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1516308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Röder, B., E. A. Ermilov, D. Philipp e M. Köhl. "Observation of polymer degradation processes in photovoltaic modules via luminescence detection". In Solar Energy + Applications, editado por Neelkanth G. Dhere. SPIE, 2008. http://dx.doi.org/10.1117/12.793795.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kimura, Ken-lchi. "THERMAL PROCESSES OF SOLAR HOUSES". In Archives of Heat Transfer. Washington: Hemisphere, 1988. http://dx.doi.org/10.1615/ichmt.1988.20thaht.200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Solar processes"

1

Lorents, D. C., S. Narang, D. C. Huestis, J. L. Mooney, T. Mill, H. K. Song e S. Ventura. High-flux solar photon processes. Office of Scientific and Technical Information (OSTI), junho de 1992. http://dx.doi.org/10.2172/10158450.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lorents, D. C., S. Narang, D. C. Huestis, J. L. Mooney, T. Mill, H. K. Song e S. Ventura. High-flux solar photon processes. Office of Scientific and Technical Information (OSTI), junho de 1992. http://dx.doi.org/10.2172/5118363.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Brunner, Christoph. Solar Heat Integrations in Industrial Processes. IEA SHC Task 49, maio de 2020. http://dx.doi.org/10.18777/ieashc-task49-2020-0001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), janeiro de 1987. http://dx.doi.org/10.2172/6369309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), janeiro de 1988. http://dx.doi.org/10.2172/6020364.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), novembro de 1989. http://dx.doi.org/10.2172/6020379.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), novembro de 1986. http://dx.doi.org/10.2172/6022834.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/5118367.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Birn, J. Solar terrestrial coupling through space plasma processes. Office of Scientific and Technical Information (OSTI), dezembro de 2000. http://dx.doi.org/10.2172/768901.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bohorquez Colombo, Angel. Solar Thermal Energy: Let the sunshine in! A renewable source for industrial processes. Inter-American Development Bank, junho de 2013. http://dx.doi.org/10.18235/0008275.

Texto completo da fonte
Resumo:
This series presents information about how solar energy can be used in industrial processes. Heat generated by solar energy can be used to cook, clean, dry, and pasteurize products as is exemplified at a Kraft Foods plant in Brazil.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia