Artigos de revistas sobre o tema "Solar engines"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Solar engines".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Luo, Haoyan. "Efficiency Improvement and Key Opportunities of Stirling Engine". Highlights in Science, Engineering and Technology 88 (29 de março de 2024): 835–46. http://dx.doi.org/10.54097/jwd1s558.
Texto completo da fonteBadescu, Viorel. "Simulation of a Solar Stirling Engine Operating Under Various Weather Conditions on Mars". Journal of Solar Energy Engineering 126, n.º 2 (1 de maio de 2004): 812–18. http://dx.doi.org/10.1115/1.1687796.
Texto completo da fonteDuan, Chen, Shui Ming Shu, Guo Zhong Ding e Ji Wei Yan. "Preliminary Design and Adiabatic Analysis of a 3kW Free Piston Stirling Engine". Applied Mechanics and Materials 325-326 (junho de 2013): 277–82. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.277.
Texto completo da fonteDologlonyan, Andrey V., Dmitriy S. Strebkov e Valeriy T. Matveenko. "Thermodynamic Characteristics of Hybrid Solar Microgas Turbine Plants under Tropical Climate". Elektrotekhnologii i elektrooborudovanie v APK 2, n.º 43 (2021): 20–35. http://dx.doi.org/10.22314/2658-4859-2021-68-2-20-35.
Texto completo da fonteAdkins, Douglas R. "Design Considerations for Heat-Pipe Solar Receivers". Journal of Solar Energy Engineering 112, n.º 3 (1 de agosto de 1990): 169–76. http://dx.doi.org/10.1115/1.2930476.
Texto completo da fonteValdès, L. C. "Competitive solar heat engines". Renewable Energy 29, n.º 11 (setembro de 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.
Texto completo da fonteReisz, Aloysius I. "To Go Beyond". Mechanical Engineering 130, n.º 11 (1 de novembro de 2008): 42–45. http://dx.doi.org/10.1115/1.2008-nov-2.
Texto completo da fonteTailer, Peter. "Stirling Machines". Energy Exploration & Exploitation 7, n.º 4 (agosto de 1989): 262–70. http://dx.doi.org/10.1177/014459878900700405.
Texto completo da fonteTopgül, Tolga. "Design, Manufacturing, and Thermodynamic Analysis of a Gamma-type Stirling Engine Powered by Solar Energy". Strojniški vestnik - Journal of Mechanical Engineering 68, n.º 12 (4 de janeiro de 2023): 757–70. http://dx.doi.org/10.5545/sv-jme.2022.368.
Texto completo da fonteGeok Pheng, Liaw, Rosnani Affandi, Mohd Ruddin Ab Ghani, Chin Kim Gan e Jano Zanariah. "Stirling Engine Technology for Parabolic Dish-Stirling System Based on Concentrating Solar Power (CSP)". Applied Mechanics and Materials 785 (agosto de 2015): 576–80. http://dx.doi.org/10.4028/www.scientific.net/amm.785.576.
Texto completo da fonteSchwalbe, Karsten, e Karl Heinz Hoffmann. "Stochastic Novikov Engine with Fourier Heat Transport". Journal of Non-Equilibrium Thermodynamics 44, n.º 4 (25 de outubro de 2019): 417–24. http://dx.doi.org/10.1515/jnet-2019-0063.
Texto completo da fonteLi, Zhengting, Dinghonglun Lou e Junhao Pan. "Stirling engines for solar thermal energy and residential purposes". Applied and Computational Engineering 11, n.º 1 (25 de setembro de 2023): 118–22. http://dx.doi.org/10.54254/2755-2721/11/20230219.
Texto completo da fonteThakur, Sejal, e Satya Sandeep Chaganti. "A Study on the Implementation of Nanotechnology in Enhancing the Environmental Changes". Scientific Bulletin 24, n.º 2 (1 de dezembro de 2019): 168–77. http://dx.doi.org/10.2478/bsaft-2019-0021.
Texto completo da fonteGarcía, David, María-José Suárez, Eduardo Blanco e Jesús-Ignacio Prieto. "Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications". Sustainability 14, n.º 24 (9 de dezembro de 2022): 16488. http://dx.doi.org/10.3390/su142416488.
Texto completo da fonteGussoli, M. K., J. C. D. de Oliveira e M. Higa. "INVESTIGATION ON VOLUME VARIATION FOR ALPHA STIRLING ENGINES ON ISOTHERMAL MODEL". Revista de Engenharia Térmica 19, n.º 2 (21 de dezembro de 2020): 10. http://dx.doi.org/10.5380/reterm.v19i2.78608.
Texto completo da fonteNguyen, Tien Han, Prabhu Paramasivam, Van Huong Dong, Huu Cuong Le e Duc Chuan Nguyen. "Harnessing a Better Future: Exploring AI and ML Applications in Renewable Energy". JOIV : International Journal on Informatics Visualization 8, n.º 1 (16 de março de 2024): 55. http://dx.doi.org/10.62527/joiv.8.1.2637.
Texto completo da fonteGordon, J. M. "On optimized solar-driven heat engines". Solar Energy 40, n.º 5 (1988): 457–61. http://dx.doi.org/10.1016/0038-092x(88)90100-4.
Texto completo da fonteBoehm, R. F. "Maximum performance of solar heat engines". Applied Energy 23, n.º 4 (janeiro de 1986): 281–96. http://dx.doi.org/10.1016/0306-2619(86)90012-7.
Texto completo da fonteEusha, Muhammad, Wolfgang Schulz, Günter Schumacher, Faraz Rasheed Mir e Gerhard Schories. "Non-combustion non-solar deployment characterization of a free-piston Stirling engine to integrate with an exothermic reactor". Open Research Europe 1 (21 de dezembro de 2021): 155. http://dx.doi.org/10.12688/openreseurope.14361.1.
Texto completo da fonteReisz, Aloysius I., e Stephen L. Rodgers. "Engines for the Cosmos". Mechanical Engineering 125, n.º 01 (1 de janeiro de 2003): 50–53. http://dx.doi.org/10.1115/1.2003-jan-4.
Texto completo da fonteJiang, Wei Jiang. "The Study of Heat-Engines Based on Refrigerant Phase-Change Circulation". Applied Mechanics and Materials 66-68 (julho de 2011): 649–53. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.649.
Texto completo da fonteKussul, Ernst, Oleksandr Makeyev, Tatiana Baidyk e Omar Olvera. "Design of Ericsson Heat Engine with Micro Channel Recuperator". ISRN Renewable Energy 2012 (14 de novembro de 2012): 1–8. http://dx.doi.org/10.5402/2012/613642.
Texto completo da fonteSetiyawan, A., A. Novianto, N. B. A. Afkar, F. Chabib, F. R. Amelia e I. Pratiwi. "Diesel engine performance test using solar-dex and biodiesel (B30) on power and torque". IOP Conference Series: Earth and Environmental Science 969, n.º 1 (1 de janeiro de 2022): 012034. http://dx.doi.org/10.1088/1755-1315/969/1/012034.
Texto completo da fonteHoegel, Benedikt, Dirk Pons, Michael Gschwendtner, Alan Tucker e Mathieu Sellier. "Thermodynamic peculiarities of alpha-type Stirling engines for low-temperature difference power generation: Optimisation of operating parameters and heat exchangers using a third-order model". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, n.º 11 (20 de novembro de 2013): 1936–47. http://dx.doi.org/10.1177/0954406213512120.
Texto completo da fonteSyarifudin, Syarifudin, e Syaiful Syaiful. "PENGARUH PENGGUNAAN ENERGI TERBARUKAN BUTANOL TERHADAP PENURUNAN EMISI JELAGA MESIN DIESEL INJEKSI LANGSUNG BERBAHAN BAKAR BIODIESEL CAMPURAN SOLAR DAN JATROPA". Infotekmesin 10, n.º 1 (30 de janeiro de 2019): 18–22. http://dx.doi.org/10.35970/infotekmesin.v10i1.20.
Texto completo da fonteAsnaghi, A., S. M. Ladjevardi, P. Saleh Izadkhast e A. H. Kashani. "Thermodynamics Performance Analysis of Solar Stirling Engines". ISRN Renewable Energy 2012 (5 de julho de 2012): 1–14. http://dx.doi.org/10.5402/2012/321923.
Texto completo da fonteChen, Lingen, Fengrui Sun e Chih Wu. "Optimum collector temperature for solar heat engines". International Journal of Ambient Energy 17, n.º 2 (abril de 1996): 73–78. http://dx.doi.org/10.1080/01430750.1996.9675221.
Texto completo da fonteRugescu, Radu D., Alina Bogoi e Radu Cirligeanu. "Intricacy of the Transit Manifold Concept Paid-off by Computational Accuracy". Applied Mechanics and Materials 325-326 (junho de 2013): 142–47. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.142.
Texto completo da fonteWen, Junming. "Frontier Solar Stirling Engines: Technical Optimization and Wide Application". Highlights in Science, Engineering and Technology 88 (29 de março de 2024): 865–72. http://dx.doi.org/10.54097/aqsy2h65.
Texto completo da fonteRamachandran, Siddharth, Naveen Kumar e Venkata Timmaraju Mallina. "A Comprehensive Perspective of Waste Heat Recovery Potential from Solar Stirling Engines". E3S Web of Conferences 313 (2021): 06001. http://dx.doi.org/10.1051/e3sconf/202131306001.
Texto completo da fonteKongtragool, Bancha, e Somchai Wongwises. "A review of solar-powered Stirling engines and low temperature differential Stirling engines". Renewable and Sustainable Energy Reviews 7, n.º 2 (abril de 2003): 131–54. http://dx.doi.org/10.1016/s1364-0321(02)00053-9.
Texto completo da fonteЛипко, Юрий, Yuriy Lipko, Александр Пашинин, Aleksandr Pashinin, Равиль Рахматулин, Ravil Rakhmatulin, Виталий Хахинов e Vitaliy Khakhinov. "Geomagnetic effects caused by rocket exhaust jets". Solar-Terrestrial Physics 2, n.º 3 (27 de outubro de 2016): 43–55. http://dx.doi.org/10.12737/22284.
Texto completo da fonteYusuf, Bakharuddin, Seno Darmanto, Sri Utami Handayani e Susastro Susastro. "KAJIAN EKSPERIMEN PENGGUNAAN SOLAR CELL SEBAGAI ALTERNATIF PENGISIAN AKUMULATOR 200Ah 12 Volt MESIN DIESEL PLTD". Jurnal Mekanova : Mekanikal, Inovasi dan Teknologi 8, n.º 2 (12 de novembro de 2022): 284. http://dx.doi.org/10.35308/jmkn.v8i2.6413.
Texto completo da fonteLezhneva, Elena, e Katerina Vakulenko. "Combined noise shield with integrated solar panels". Bulletin of Kharkov National Automobile and Highway University, n.º 93 (27 de maio de 2021): 47–53. http://dx.doi.org/10.30977/bul.2219-5548.2021.93.0.47.
Texto completo da fonteKropiwnicki, Jacek, e Mariusz Furmanek. "Application of Stirling engine for recovery energy from exhaust gas". AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 19, n.º 9 (30 de setembro de 2018): 89–92. http://dx.doi.org/10.24136/atest.2018.290.
Texto completo da fonteBoretti, Alberto. "α-Stirling hydrogen engines for concentrated solar power". International Journal of Hydrogen Energy 46, n.º 29 (abril de 2021): 16241–47. http://dx.doi.org/10.1016/j.ijhydene.2021.02.036.
Texto completo da fonteSahin, Ahmet Z. "Optimum operating conditions of solar driven heat engines". Energy Conversion and Management 41, n.º 13 (setembro de 2000): 1335–43. http://dx.doi.org/10.1016/s0196-8904(99)00192-2.
Texto completo da fonteGöktun, Selahatti̇n. "On optimized solar-pond-driven irreversible heat engines". Renewable Energy 7, n.º 1 (janeiro de 1996): 67–69. http://dx.doi.org/10.1016/0960-1481(95)00112-3.
Texto completo da fonteRanieri, Salvatore, Gilberto Prado e Brendan MacDonald. "Efficiency Reduction in Stirling Engines Resulting from Sinusoidal Motion". Energies 11, n.º 11 (24 de outubro de 2018): 2887. http://dx.doi.org/10.3390/en11112887.
Texto completo da fonteAidi Sharif, Montassar, Kaesar Sabah Khalaf e Musa Anwar Omer. "A Simulation Model of a System-based Concentrated Solar Power System (CSP) for Maximum Solar Energy Harvesting Applications". NTU Journal of Renewable Energy 4, n.º 1 (10 de fevereiro de 2023): 26–35. http://dx.doi.org/10.56286/ntujre.v4i1.410.
Texto completo da fonteSaksono, Puji, e Pandu Prastiyo Utomo. "ANALISIS PENGARUH PEMBEBANAN ENGINE TERHADAP EMISI GAS BUANG DAN FUEL CONSUMPTION MENGGUNAKAN BAHAN BAKAR SOLAR DAN BIODIESEL B10 PADA ENGINE CUMMINS QSK 45 C". POROS 15, n.º 2 (6 de janeiro de 2018): 136. http://dx.doi.org/10.24912/poros.v15i2.1276.
Texto completo da fonteKIM, YOUNG MIN, DONG GIL SHIN, SANG TAE LEE e DANIEL FAVRAT. "THERMODYNAMIC ANALYSIS OF A CLOSED BRAYTON/ERICSSON CYCLE ENGINE WITH SCROLL MACHINES". International Journal of Air-Conditioning and Refrigeration 18, n.º 04 (dezembro de 2010): 279–87. http://dx.doi.org/10.1142/s2010132510000277.
Texto completo da fonteKristyadi, Tarsisius, Diki Ismail Permana, Muhammad Pramuda Nugraha Sirodz, Encu Saefudin e Istvan Farkas. "Performance and Emission of Diesel Engine Fuelled by Commercial Bio-Diesel Fuels in Indonesia". Acta Technologica Agriculturae 25, n.º 4 (1 de novembro de 2022): 221–28. http://dx.doi.org/10.2478/ata-2022-0032.
Texto completo da fonteЛипко, Юрий, Yuriy Lipko, Александр Пашинин, Aleksandr Pashinin, Равиль Рахматулин, Ravil Rakhmatulin, Виталий Хахинов e Vitaliy Khakhinov. "Geomagnetic effects caused by rocket exhaust jets". Solnechno-Zemnaya Fizika 2, n.º 3 (17 de setembro de 2016): 33–40. http://dx.doi.org/10.12737/19634.
Texto completo da fonteHaider, Syed Mustafa, Shafqat Hussain, Hassan Farid, Usman Shahid, Awais Ahmed e Nazar Abbas. "Experimental Investigations on the Effects of HHO Gas Fuel Additive on Performance of a Gasoline Engine". Pakistan Journal of Engineering and Technology 4, n.º 4 (23 de dezembro de 2021): 73–78. http://dx.doi.org/10.51846/vol4iss4pp73-78.
Texto completo da fonteChouder, Ryma, Pascal Stouffs e Azzedine Benabdesselam. "A variant of the Fluidyne: the liquid piston ERICSSON engine". E3S Web of Conferences 313 (2021): 04001. http://dx.doi.org/10.1051/e3sconf/202131304001.
Texto completo da fonteSuijs, Ward, e Sebastian Verhelst. "Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling". Energies 16, n.º 22 (8 de novembro de 2023): 7497. http://dx.doi.org/10.3390/en16227497.
Texto completo da fonteAini, Zulfatri, Kunaifi, Alex Wenda, Ewi Ismaredah e Wahyu Anjarjati. "Solar Irrigation System in Indonesia: Practical Assessment and Evaluation for Converting Fossil Fuels with Solar Energy". IOP Conference Series: Earth and Environmental Science 927, n.º 1 (1 de dezembro de 2021): 012022. http://dx.doi.org/10.1088/1755-1315/927/1/012022.
Texto completo da fonteIskendar, Abdul Muis, Waluyo, Kunto Ismoyo, Farid Arif Binaruno, Mulyadi Agus Widodo, Dimas Aldyanto Wibowo et al. "Comparative Analysis of Conventional and Electric Motor Propulsion Systems for “Sandek” Fishing Boats in West Sulawesi from a Sustainable Economical Aspect". E3S Web of Conferences 484 (2024): 03002. http://dx.doi.org/10.1051/e3sconf/202448403002.
Texto completo da fonteLukatela, Tom. "Renewables, gas and batteries: reliable and efficient power for industry". APPEA Journal 59, n.º 2 (2019): 635. http://dx.doi.org/10.1071/aj18069.
Texto completo da fonte