Literatura científica selecionada sobre o tema "Solar cells"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Solar cells".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Solar cells"
Rosana, N. T. Mary, e Joshua Amarnath . D. "Dye Sensitized Solar Cells for The Transformation of Solar Radiation into Electricity". Indian Journal of Applied Research 4, n.º 6 (1 de outubro de 2011): 169–70. http://dx.doi.org/10.15373/2249555x/june2014/53.
Texto completo da fonteMajidzade, Vusala A. "Sb2Se3-BASED SOLAR CELLS: OBTAINING AND PROPERTIES". Chemical Problems 18, n.º 2 (2020): 181–98. http://dx.doi.org/10.32737/2221-8688-2020-2-181-198.
Texto completo da fonteVlaskin, V. I. "Nanocrystalline silicon carbide films for solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 19, n.º 3 (30 de setembro de 2016): 273–78. http://dx.doi.org/10.15407/spqeo19.03.273.
Texto completo da fonteTsubomura, Hiroshi, e Hikaru Kobayashi. "Solar cells". Critical Reviews in Solid State and Materials Sciences 18, n.º 3 (janeiro de 1993): 261–326. http://dx.doi.org/10.1080/10408439308242562.
Texto completo da fonteLoferski, Joseph. "Solar cells". Solar Energy 42, n.º 4 (1989): 355–56. http://dx.doi.org/10.1016/0038-092x(89)90040-6.
Texto completo da fonteMa, Dongling. "Solar Energy and Solar Cells". Nanomaterials 11, n.º 10 (12 de outubro de 2021): 2682. http://dx.doi.org/10.3390/nano11102682.
Texto completo da fonteK Sengar, Saurabh. "CIGS based Solar Cells - A Scaps 1D Study". International Journal of Science and Research (IJSR) 13, n.º 7 (5 de julho de 2024): 969–71. http://dx.doi.org/10.21275/sr24719130851.
Texto completo da fonteMohammad Bagher, Askari. "Comparison of Organic Solar Cells and Inorganic Solar Cells". International Journal of Renewable and Sustainable Energy 3, n.º 3 (2014): 53. http://dx.doi.org/10.11648/j.ijrse.20140303.12.
Texto completo da fonteMathew, Xavier. "Solar cells and solar energy materials". Solar Energy 80, n.º 2 (fevereiro de 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.
Texto completo da fonteGraetzel, Michael. "Editorial: Solar Cells and Solar Fuels". Current Opinion in Electrochemistry 2, n.º 1 (abril de 2017): A4. http://dx.doi.org/10.1016/j.coelec.2017.05.005.
Texto completo da fonteTeses / dissertações sobre o assunto "Solar cells"
Ehrler, Bruno. "Nanocrystalline solar cells". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.
Texto completo da fonteMusselman, Kevin Philip Duncan. "Nanostructured solar cells". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609003.
Texto completo da fonteSubbaiyan, Navaneetha Krishnan. "Supramolecular Solar Cells". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149672/.
Texto completo da fonteStenberg, Jonas. "Perovskite solar cells". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137302.
Texto completo da fonteBett, Alexander Jürgen [Verfasser], e Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Texto completo da fonteNoel, Nakita K. "Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells". Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.
Texto completo da fonteSøiland, Anne Karin. "Silicon for Solar Cells". Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.
Texto completo da fonteThis thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.
The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kinetics of the removal reactions for dissolved carbon and boron in a silicon melt by oxidative gas treatment. The main focus was on carbon, since boron may be removed by other means. A plasma arc was employed in combination with inductive heating. The project was, however, closed after only two experiments. The main observations from these two experiments were a significant boron removal, and the formation of a silica layer on the melt surface when the oxygen content in the gas was increased from 2 to 4 vol%. This silica layer inhibited further reactions.
Multi-crystalline (mc) silicon produced by directional solidification constitutes a large part of the solar cell market today. Other techniques are emerging/developing and to keep its position in the market it is important to stay competitive. Therefore increasing the knowledge on the material produced is necessary. Gaining knowledge also on phenomenas occurring during the crystallisation process can give a better process control.
Part II of this work was motivated by the industry reporting high inclusion contents in certain areas of the material. The aim of the work was to increase the knowledge of inclusion formation in this system. The experimental work was divided into three different parts;
1) Inclusion study
2) Extraction of melt samples during crystallisation, these were to be analysed for carbon- and nitrogen. Giving thus information of the contents in the liquid phase during soldification.
3) Fourier Transform Infrared Spectroscopy (FTIR)-measurements of the substitutional carbon contents in wafers taken from similar height positions as the melt samples. Giving thus information of the dissolved carbon content in the solid phase.
The inclusion study showed that the large inclusions found in this material are β-SiC and β-Si3N4. They appear in particularly high quantities in the top-cuts. The nitrides grow into larger networks, while the carbide particles tend to grow on the nitrides. The latter seem to act as nucleating centers for carbide precipitation. The main part of inclusions in the topcuts lie in the size range from 100- 1000 µm in diameter when measured by the Coulter laser diffraction method.
A method for sampling of the melt during crystallisation under reduced pressure was developed, giving thus the possibility of indicating the bulk concentration in the melt of carbon and nitrogen. The initial carbon concentration was measured to ~30 and 40 ppm mass when recycled material was employed in the charge and ~ 20 ppm mass when no recycled material was added. Since the melt temperature at this initial stage is ~1500 °C these carbon levels are below the solubility limit. The carbon profiles increase with increasing fraction solidified. For two profiles there is a tendency of decreasing contents at high fraction solidified.
For nitrogen the initial contents were 10, 12 and 44 ppm mass. The nitrogen contents tend to decrease with increasing fraction solidified. The surface temperature also decreases with increasing fraction solidified. Indicating that the melt is saturated with nitrogen already at the initial stage. The proposed mechanism of formation is by dissolution of coating particles, giving a saturated melt, where β-Si3N4 precipitates when cooling. Supporting this mechanism are the findings of smaller nitride particles at low fraction solidified, that the precipitated phase are β-particles, and the decreasing nitrogen contents with increasing fraction solidified.
The carbon profile for the solid phase goes through a maximum value appearing at a fraction solidified from 0.4 to 0.7. The profiles flatten out after the peak and attains a value of ~ 8 ppma. This drop in carbon content is associated with a precipitation of silicon carbide. It is suggested that the precipitation of silicon carbide occurs after a build-up of carbon in the solute boundary layer.
FTIR-measurements for substitutional carbon and interstitial oxygen were initiated at the institute as a part of the work. A round robin test was conducted, with the Energy Research Centre of the Netherlands (ECN) and the University of Milano-Bicocci (UniMiB) as the participants. The measurements were controlled against Secondary Ion Mass Spectrometer analyses. For oxygen the results showed a good correspondence between the FTIR-measurements and the SIMS. For carbon the SIMS-measurements were significantly lower than the FTIR-measurements. This is probably due to the low resistivity of the samples (~1 Ω cm), giving free carrier absorption and an overestimation of the carbon content.
Falkenberg, Christiane. "Optimizing Organic Solar Cells". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89214.
Texto completo da fonteHadipour, Afshin. "Polymer tandem solar cells". [S.l. : Groningen : s.n. ; University Library of Groningen] [Host], 2007. http://irs.ub.rug.nl/ppn/305349066.
Texto completo da fonteVaynzof, Yana. "Inverted hybrid solar cells". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609823.
Texto completo da fonteLivros sobre o assunto "Solar cells"
Sharma, S. K., e Khuram Ali, eds. Solar Cells. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3.
Texto completo da fonteArya, Sandeep, e Prerna Mahajan. Solar Cells. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7333-0.
Texto completo da fonteTravino, Michael R. Dye-sensitized solar cells and solar cell performance. Hauppauge, N.Y: Nova Science Publisher, 2011.
Encontre o texto completo da fonteModdel, Garret, e Sachit Grover, eds. Rectenna Solar Cells. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1.
Texto completo da fonteHiramoto, Masahiro, e Seiichiro Izawa, eds. Organic Solar Cells. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9113-6.
Texto completo da fonteChoy, Wallace C. H., ed. Organic Solar Cells. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4823-4.
Texto completo da fonteTress, Wolfgang. Organic Solar Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10097-5.
Texto completo da fonteSankir, Nurdan Demirci, e Mehmet Sankir, eds. Photoelectrochemical Solar Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119460008.
Texto completo da fonteHou, Shaocong. Fiber Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2864-9.
Texto completo da fonteGiovanni, Palmisano, e Ciriminna Rosaria, eds. Flexible solar cells. Weinheim [Germany]: Wiley-VCH, 2008.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Solar cells"
Buecheler, Stephan, Lukas Kranz, Julian Perrenoud e Ayodhya Nath Tiwari. "CdTe Solar Cells solar cell". In Encyclopedia of Sustainability Science and Technology, 1976–2004. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_463.
Texto completo da fonteGrätzel, Michael. "Mesoscopic Solar Cells Mesoscopic Solar Cells". In Solar Energy, 79–96. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_465.
Texto completo da fonteGrätzel, Michael. "Mesoscopic Solar Cells Mesoscopic Solar Cells". In Encyclopedia of Sustainability Science and Technology, 6566–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_465.
Texto completo da fonteGłowacki, Eric Daniel, Niyazi Serdar Sariciftci e Ching W. Tang. "Organic Solar Cells organic solar cell". In Solar Energy, 97–128. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_466.
Texto completo da fonteGłowacki, Eric Daniel, Niyazi Serdar Sariciftci e Ching W. Tang. "Organic Solar Cells organic solar cell". In Encyclopedia of Sustainability Science and Technology, 7553–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_466.
Texto completo da fonteGregory, Peter. "Solar Cells". In High-Technology Applications of Organic Colorants, 45–52. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3822-6_6.
Texto completo da fonteLin, Ching-Fuh. "Solar Cells". In Topics in Applied Physics, 237–59. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_9.
Texto completo da fonteBöer, Karl W. "Solar Cells". In Survey of Semiconductor Physics, 1119–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2912-1_34.
Texto completo da fonteZhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga et al. "Solar Cells". In Encyclopedia of Nanotechnology, 2459. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100783.
Texto completo da fonteGoodnick, Stephen M., e Christiana Honsberg. "Solar Cells". In Springer Handbook of Semiconductor Devices, 699–745. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Solar cells"
McGehee, Michael. "Nanostructured Solar Cells". In Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swa1.
Texto completo da fonteRuby, Douglas S., Saleem Zaidi, S. Narayanan, Satoshi Yamanaka e Ruben Balanga. "RIE-Texturing of Industrial Multicrystalline Silicon Solar Cells". In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44003.
Texto completo da fonteBhat, P. K., D. S. Shen e R. E. Hollingsworth. "Stability of amorphous silicon solar cells". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41008.
Texto completo da fonteWang, Renze, e Zhiping Zhou. "Nanowire tandem solar cells". In SPIE Solar Energy + Technology, editado por Loucas Tsakalakos. SPIE, 2012. http://dx.doi.org/10.1117/12.929104.
Texto completo da fonteFranklin, Evan, Andrew Blakers, Vernie Everett e Klaus Weber. "Sliver solar cells". In Microelectronics, MEMS, and Nanotechnology, editado por Hark Hoe Tan, Jung-Chih Chiao, Lorenzo Faraone, Chennupati Jagadish, Jim Williams e Alan R. Wilson. SPIE, 2007. http://dx.doi.org/10.1117/12.759594.
Texto completo da fonteChambouleyron, I. "MULTIJUNCTION SOLAR CELLS". In Proceedings of the International School on Crystal Growth and Characterization of Advanced Materials. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541589_0022.
Texto completo da fonteHo-Baillie, Anita. "Perovskite Solar Cells". In Organic, Hybrid, and Perovskite Photovoltaics XXII, editado por Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira e Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.
Texto completo da fonteEnriquez, Christian, Deidra Hodges, Angel De La Rosa, Luis Valerio Frias, Yves Ramirez, Victor Rodriguez, Daniel Rivera e Alberto Telles. "Perovskite Solar Cells". In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980712.
Texto completo da fontePolman, Albert. "Plasmonic Solar Cells". In Optical Nanostructures for Photovoltaics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pv.2010.pwa2.
Texto completo da fonteBrandt, Martin S., e Martin Stutzmann. "Investigation of the Staebler-Wronski effect in a-Si:H by spin-dependent photoconductivity". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41015.
Texto completo da fonteRelatórios de organizações sobre o assunto "Solar cells"
Gur, Ilan. Nanocrystal Solar Cells. Office of Scientific and Technical Information (OSTI), janeiro de 2006. http://dx.doi.org/10.2172/922721.
Texto completo da fonteHall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, J. Cotter, T. Hughes-Lampros, J. A. Rand, T. R. Ruffins e A. M. Barnett. Thin silicon solar cells. Office of Scientific and Technical Information (OSTI), dezembro de 1992. http://dx.doi.org/10.2172/10121623.
Texto completo da fonteMatson, Rick. National solar technology roadmap: Sensitized solar cells. Office of Scientific and Technical Information (OSTI), junho de 2007. http://dx.doi.org/10.2172/1217460.
Texto completo da fonteHuo, Jiayan. Vapor deposited perovskites solar cells. Ames (Iowa): Iowa State University, janeiro de 2019. http://dx.doi.org/10.31274/cc-20240624-1581.
Texto completo da fonteMcNeely, James B., Gerald H. Negley e Allen M. Barnett. GaAsP Top Solar Cells for Increased Solar Conversion Efficiency. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1989. http://dx.doi.org/10.21236/ada206808.
Texto completo da fonteSinton, R. A., A. Cuevas, R. R. King e R. M. Swanson. High-efficiency concentrator silicon solar cells. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6343818.
Texto completo da fonteMitzi, David, e Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), janeiro de 2020. http://dx.doi.org/10.2172/1582433.
Texto completo da fonteAger III, J. W., e W. Walukiewicz. High efficiency, radiation-hard solar cells. Office of Scientific and Technical Information (OSTI), outubro de 2004. http://dx.doi.org/10.2172/840450.
Texto completo da fonteSpeck, James S., Steven P. DenBaars, Umesh K. Mishra e Shuji Nakamura. High Performance InGaN-Based Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, maio de 2012. http://dx.doi.org/10.21236/ada562115.
Texto completo da fontePrasad, Paras N. Novel Flexible Plastic-Based Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, março de 2011. http://dx.doi.org/10.21236/ada566134.
Texto completo da fonte