Literatura científica selecionada sobre o tema "Solar adsorption"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Solar adsorption".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Solar adsorption"
Nu, Soe Soe, e Dr Mi Sandar Mon. "Analysis of Adsorption Time for Solar Adsorption Refrigeration System". International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31 de outubro de 2018): 61–63. http://dx.doi.org/10.31142/ijtsrd18349.
Texto completo da fonteSong, Xiang Bo, Xu Ji, Ming Li, Jie Qing Fan, Bin Luo, Xi Luo e Yun Feng Wang. "Investigation on Influence of Solar Radiation on Performance of Solar Adsorption Refrigeration System". Advanced Materials Research 953-954 (junho de 2014): 57–60. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.57.
Texto completo da fonteKim, Tae-Young, Kyung-Hee Park, Jae-Wook Lee, Shin Han e Sung-Young Cho. "Adsorption Equilibrium and Kinetics ofGardenia BlueonTiO2Photoelectrode for Dye-Sensitized Solar Cells". International Journal of Photoenergy 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/429312.
Texto completo da fonteZhang, Hua, Xu Ji, Ming Li, Qiang Wang e Xiang Bo Song. "A Comparative Study on Solar Refrigeration Technology". Applied Mechanics and Materials 541-542 (março de 2014): 887–91. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.887.
Texto completo da fonteBelyanovskaya, Elena, Grigoriy Pustovoy, Yana Sergiyenko, Kostyntyn Sukhyy, Oleksandr Yerоmin, Elena Prokopenko, Mikhailo Gubinskyi e Ján Kizek. "Performance of the Adsorptive Solar Refrigerators Based on Composite Adsobents ’Silica Gel – Sodium Sulphate’". Advances in Thermal Processes and Energy Transformation 2, n.º 2 (2019): 19–23. http://dx.doi.org/10.54570/atpet2019/02/02/0019.
Texto completo da fonteHassan, Hassan Zohair. "Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production". Energies 15, n.º 18 (16 de setembro de 2022): 6793. http://dx.doi.org/10.3390/en15186793.
Texto completo da fonteJi, A. Min, Tian Tian e Bo Ning Tang. "Study on Solar Energy for Pre-Cooling Technology of Fruit and Vegetable". Applied Mechanics and Materials 700 (dezembro de 2014): 37–41. http://dx.doi.org/10.4028/www.scientific.net/amm.700.37.
Texto completo da fonteMohammed, Mena Safaa, e Nibal Fadel Farman. "Solar adsorption cooling system operating by activated–carbon–ethanol bed". International Journal of Renewable Energy Development 13, n.º 3 (28 de março de 2024): 430–47. http://dx.doi.org/10.61435/ijred.2024.60170.
Texto completo da fonteLiang, Hai Bin, e Hui Zhong Zhao. "Experimental Study on Adsorption Water Tube from Atmosphere Using Solar Energy". Advanced Materials Research 694-697 (maio de 2013): 712–15. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.712.
Texto completo da fonteKuri, J. L. W., A. G. Sangines e S. Riffat. "Solar adsorption refrigeration unit (SARU)". International Journal of Low-Carbon Technologies 2, n.º 2 (1 de abril de 2007): 178–94. http://dx.doi.org/10.1093/ijlct/2.2.178.
Texto completo da fonteTeses / dissertações sobre o assunto "Solar adsorption"
Schurger, Uwe. "Investigation into solar powered adsorption cooling systems : adsorption technology and system analysis". Thesis, De Montfort University, 2007. http://hdl.handle.net/2086/4122.
Texto completo da fontePapakokkinos, Giorgos. "Computational modeling of adsorption packed bed reactors and solar-driven adsorption cooling systems". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672099.
Texto completo da fonteLa preocupació mediambiental sobre el canvi climàtic i l'esgotament d'ozó exigeix un canvi de paradigma en la producció de fred. La demanda de refredament mostra una tendència alarmant creixent, així és imperatiu satisfer-la de forma sostenible. Els sistemes de refredament per adsorció (ACS) són un candidat per a un futur sostenible de la producció de fred, ja que poden utilitzar energia solar o calor residual, emprant substàncies amb zero potencial d'esgotament d'ozó i d'escalfament global. L'objectiu d'aquesta tesi és contribuir a la investigació i millora dels ACS, mitjançant el desenvolupament de dos models computacionals - que aborden els ACS des de diferents perspectives - i la seva utilització per a la realització d'estudis numèrics. La primera línia d'investigació se centra en el disseny del reactor d'adsorció, el component més important dels ACS. La seva configuració geomètrica és determinant pel rendiment de sistema. El seu disseny és una tasca crucial, ja que crea una dicotomia entre la potència específica de refrigeració (SCP) i el coeficient de rendiment (COP). Les optimitzacions individuals basades en el SCP i el COP resultarien a configuracions geomètriques completament oposades. S'ha desenvolupat un model computacional per a la simulació de reactors d'adsorció tipus "packed bed", capaç de simular reactors de qualsevol geometria. S'adopta una estratègia multi-timestep, que permet una dràstica reducció del cost computacional de les simulacions. La fiabilitat del model es va avaluar a través de processos de verificació i validació. Dins d'aquesta línia de recerca es van realitzar dos estudis principals. El primer aspira a proporcionar una comparació entre cinc geometries de reactors, motivat per la falta de comparabilitat entre diferents estudis en la literatura. Es simulen tretze casos de cada geometria, variant el gruix de les aletes, la seva longitud i la fracció de volum de sòlid. El segon estudi presenta la investigació d'una geometria sub-explorada previament, el reactor d'adsorció de honeycomb hexagonal. Es realitza un estudi paramètric pel que fa a les tres dimensions que defineixen la geometria, així com per a diverses condicions de funcionament. La segona línia de recerca es dedica a la investigació dels ACS. i en particular, a la seva integració dins d'un sistema tèrmic més ampli, un edifici refredat per energia solar. Aquesta integració no és senzilla a causa de la inèrcia tèrmica i a el funcionament cíclic inherent dels ACS, així com a la dependència d'una font intermitent i d'un sistema auxiliar, amb l'objectiu de prioritzar l'energia solar. S'ha desenvolupat un model numèric utilitzant models 1-d pels reactors i models 0-d per l'evaporador i el condensador. El model es va validar amb resultats experimentals trobats en la literatura. El model es va acoblar amb l'eina d'optimització genèrica GenOpt, permetent així estudis d'optimització. El model ACS es va acoblar amb models de col·lectors solars, emmagatzematge tèrmic i amb un model d'edifici. Aquest últim va ser desenvolupat prèviament al CTTC. Aquest acoblament resulta a una eina de simulació integral per a edificis refredats per energia solar utilitzant adsorció. Es considera un cas d'estudi per a una oficina refredada per energia solar, amb l'objectiu d'investigar el potencial de satisfer la seva demanda de fred utilitzant energia solar. Es proposa una estratègia de control basada en la duració variable del cicle, utilitzant valors optimitzats per a les condicions instantànies. La durada variable d'el cicle permet satisfer la demanda utilitzant una quantitat significativament menor de col·lectors solars o un menor aportació d'energia auxiliar. Les emissions de CO2 evitades es calculen entre 28.1-90.7% respecte a quatre escenaris de sistemes elèctrics de diferent rendiment i intensitat d'emissions de carboni.
Merino, Jose Carlos Alvarez, e Kazuo Hatakeyama. "Technology surveillance of the solar refrigeration by absorption/adsorption". Institute of Electrical and Electronics Engineers Inc, 2016. http://hdl.handle.net/10757/622310.
Texto completo da fonteIn order to establish networks of cooperation looking for not to duplicate research and even to make use of existing research in a remote form, it is necessary to identify and classify (around the world) the researchers and laboratories, that are researching in the topic of solar refrigeration by absorption/adsorption. The methodology consists in: i) the technology's classification, ii) technological trajectory Identification, iii) a thematic bibliographic review, and iv) patent's analysis. In this way, with the previous determination of keywords, will be identified main authors and their respective institutions. With the same keywords, are determined the licensed patents (in certain span of time). In addition, the analysis of publications, patents, and commercial products give us an opportunity to establish comparisons between prototypes and tests (in several conditions). The larger results implicate the use of actor's network and the remote access to the data and tests, for a collaborative research, overcoming the lack of laboratory resource and accelerating the knowledge acquisition
Revisión por pares
Sinha, Saket. "An energy efficient solar-assisted advanced adsorption chiller system". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23401.
Texto completo da fonteYou, Ying 1962. "A solar adsorption refrigeration system operating at near atmospheric pressure". Monash University, Gippsland School of Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/8740.
Texto completo da fonteEscobedo, João Francisco. "Refrigeração com uso de energia solar". Universidade de São Paulo, 1987. http://www.teses.usp.br/teses/disponiveis/54/54132/tde-28052009-094024/.
Texto completo da fonteA numerical simulation of the adsorption refrigeration cycle was made for zeolite/water and activated carbon(AC-35)/ methanol pairs, to select the pair and the solar collector in the prototype. The fabricated prototype consists of a cylindrical paraolic concentrator with solar trackins, a heat pipe and the refrigeration unit (with the zeolite/water pair). The technical aspects of values, welds and out-gassing are analyzed. The results of the performance tests are presented, discussed and compared with the literature. An analysis of costs is made. In parallel thermopiles were constructed using the evaporation method. These thermopiles were used in the construction of the piranometer and the pirheliometer. The instruments were characterized in terms of: sensitivity, stability with time, linearity, effects of temperature and natural convenction. The results of this characterization are discussed and compared with a model made by Eppley. Finally, in Apendix I, we tested the performance of a flat plate collector using a selective coating of aluminium oxide (developed in IFQSC) as absorber. The Best conditions for obtaining the seletive coating on big size plates are discussed.
Tabassum, Alim Abid. "Solar refrigeration : evaluation of technical options and design of a solar-generator-adsorber for a novel adsorption refrigerator". Thesis, Cranfield University, 1989. http://dspace.lib.cranfield.ac.uk/handle/1826/4213.
Texto completo da fonteTabassum, Salim Abid. "Solar refrigeration: evaluation of technical options and design of a solar-generator-adsorber for a novel adsorption refrigerator". Thesis, Cranfield University, 1989. http://hdl.handle.net/1826/4213.
Texto completo da fonteAraÃjo, Maria Elieneide. "ValidaÃÃo experimental de um resfriador de Ãgua operando em ciclo de adsorÃÃo com aquecimento solar indireto". Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=3400.
Texto completo da fonteApresenta a validaÃÃo experimental de um novo refrigerador solar por adsorÃÃo com aquecimento indireto. Os componentes do refrigerador sÃo: adsorvedor, condensador, evaporador e coletor solar. A escolha do par adsorbato / adsorvente, Ãgua e sÃlica gel tipo RD, respectivamente, levou em consideraÃÃo as temperaturas alcanÃadas pelos coletores e disponÃveis para a dessorÃÃo do fluÃdo refrigerante (Ãgua) das cavidades do material adsorvente (sÃlido poroso). Devido à coexistÃncia das etapas de aquecimento e resfriamento no adsorvedor, foi definida uma geometria para este componente capaz de permitir uma melhor dissipaÃÃo de calor no material adsorvente na fase de resfriamento, e a conservaÃÃo de energia tÃrmica durante a fase de aquecimento. Os resultados experimentais comprovaram o funcionamento do refrigerador, visto que foram atingidas temperaturas de 140ÂC na entrada do adsorvedor, 80ÂC no leito adsortivo e de 4,4ÂC no evaporador, possibilitando sua aplicaÃÃo em sistemas de condicionamento de ar
This work presents the experimental validation of a new adsorption solar refrigeration with indirect heating. The components of the refrigerator are: an adsorber, a condenser, an evaporator, and a solar collector. The choice of the adsorbate / adsorbent pair, water and silica gel type RD, respectively, took into consideration the temperatures reached by the solar collectors and available for the desorption of the refrigerant fluid (water) from the cavities of the adsorbent material (a porous solid). Due to the co-existence of the heating and cooling phases in the adsorber, a specific geometry for this component was defined so as to allow a good heat dissipation in the adsorbent material in the cooling phase, and the conservation of thermal energy in the heating phase. The experimental results validate the operation of the refrigerator, as temperature valves of 140ÂC at the inlet of the adsorber, of 80ÂC in the adsorber bed, and of 4,4ÂC in the evaporator were reached, allowing its application in air conditioning systems
Demirocak, Emre Dervis. "Thermodynamic And Economic Analysis Of A Solar Thermal Powered Adsorption Cooling System". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610110/index.pdf.
Texto completo da fontemass recovery cycles are presented. Secondly, adsorption characteristics of three adsorbent/adsorbate pairs which are zeolite-water, silica gel-water and activated carbon-methanol are given. Following this, load side (i.e., building) of the system is designed and parameters that should be considered in building design are presented. Then, solar-thermal cooling system design methodology with an emphasis on solar fraction is presented. In addition, system parameters effecting the performance of the adsorption cooling system are analyzed and results are presented. Finally, economic analysis is done in order to understand the economic feasibility of the solar-thermal cooling systems compared to conventional cooling systems. TRNSYS is used for the yearly simulations and an integrated model of the overall system is developed in TRNSYS. Since energy consumption and performance investigations of environment-dependent systems such as building HVAC, refrigeration systems and solar collectors usually require weather information, typical meteorological year (TMY) data for Antalya is also generated in order to be used in the analysis of the system parameters.
Livros sobre o assunto "Solar adsorption"
Gong, Feng. Solar/multifuel adsorption refrigeration. [s.l.]: typescript, 1993.
Encontre o texto completo da fonteIt's the sun, not your SUV: CO₂ won't destroy the Earth. South Bend, Ind: St. Augustine's Press, 2008.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Solar adsorption"
Kaushik, S. C., S. K. Tyagi e V. Baiju. "Vapour Adsorption Cooling Systems". In Solar Cooling, 203–41. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-42410-6_7.
Texto completo da fonteMuttakin, Mahbubul, Kazuhide Ito e Bidyut Baran Saha. "Solar Thermal-Powered Adsorption Chiller". In Solar Energy, 117–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0675-8_8.
Texto completo da fonteÜlkü, S. "Solar Adsorption Heat Pumps". In Solar Energy Utilization, 424–35. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3631-7_20.
Texto completo da fonteMohammed, Ramy H., e Ahmed A. Askalany. "Productivity Improvements of Adsorption Desalination Systems". In Solar Desalination Technology, 325–57. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6887-5_15.
Texto completo da fonteJrad, Amal Bel Haj, Abdelaziz Zagnani e Abdallah Mhimid. "Solar Adsorption Cooling System Study". In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1523–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_443.
Texto completo da fonteSangwan, Satish, e Prodyut R. Chakraborty. "Thermodynamic Analysis of Activated Carbon–Ethanol and Zeolite–Water Based Adsorption Cooling Systems". In Solar Energy, 179–204. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0675-8_10.
Texto completo da fonteYang, Wansheng, Shuli Liu, Xiaoqiang Zhai, Yin Bi, Zhangyuan Wang e Xudong Zhao. "Solar Desiccant (Absorption/Adsorption) Cooling/Dehumidification Technologies". In Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation, 211–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17283-1_7.
Texto completo da fonteRaj, Priyemant, Vishal kumar, Ajay Vashist, Meeta Sharma e Anoop Kumar Shukla. "Comprehensive Study on Solar Adsorption Cooling System". In Lecture Notes in Mechanical Engineering, 217–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1894-2_19.
Texto completo da fonteAmmor, L., H. El Ghitani, S. Savary e S. Martinuzzi. "Improvement of Polycrystalline Silicon Cells by Adsorption of Hydrogen". In Seventh E.C. Photovoltaic Solar Energy Conference, 860–64. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_152.
Texto completo da fontePichat, P. "Photocatalysis: Heterogeneous Regime. Catalysts, Adsorption and New Techniques". In Photochemical Conversion and Storage of Solar Energy, 277–93. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3396-8_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Solar adsorption"
Vas, John Paul, Rudolf Charles D’Souza, Ravikantha Prabhu e Sharun Mendonca. "Adsorption based solar refrigeration system". In EMERGING TRENDS IN MECHANICAL ENGINEERING 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5092917.
Texto completo da fonteRaymand, David, Tomas Edvinsson, Daniel Spångberg, Adri van Duin e Kersti Hermansson. "Water adsorption beyond monolayer coverage on ZnO surfaces and nanoclusters". In Solar Energy + Applications, editado por Gunnar Westin. SPIE, 2008. http://dx.doi.org/10.1117/12.795337.
Texto completo da fonteAbdullah, M. O., e S. L. Leo. "Feasibility Study of Solar Adsorption Technologies for Automobile Air-Conditioning". In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76064.
Texto completo da fonteAnyanwu, Emmanuel E., e Nnamdi V. Ogueke. "Economic Evaluation of a Solid Adsorption Solar Refrigerator". In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99052.
Texto completo da fonteHamed, Ahmed M., Walaa R. Abd El Ramadan e S. H. El-Eman. "Study on the Performance of a Fluidized Air Dehumidifier". In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76202.
Texto completo da fonteTrujeque Bolio, Jessica G., e Julio Cesar Ramirez Hernandez. "Solar Adsorption Refrigerator With Work Pair Economical". In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54130.
Texto completo da fonteEl Fadar, A., A. Haddi, M. Becherif e J. Jay. "Automation of a solar adsorption refrigeration system". In 2013 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2013. http://dx.doi.org/10.1109/irsec.2013.6529722.
Texto completo da fonteRibeiro, Celina Maria, Antonio Pralon Leite, Francisco Antonio Belo, Douglas Bressan Riffel, Belkacem Zeghmati e Mr Daniel Sarmento. "Air Conditioning System of 20 kW Based on Solar-Gas Adsorption". In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.20.22.
Texto completo da fonteWayment-Steele, Hannah K., Lewis E. Johnson, Matthew C. Dixon e Malkiat S. Johal. "Characterization of N3 dye adsorption on TiO2using quartz-crystal microbalance with dissipation monitoring". In SPIE Solar Energy + Technology, editado por Louay A. Eldada e Michael J. Heben. SPIE, 2013. http://dx.doi.org/10.1117/12.2023654.
Texto completo da fonteAnyanwu, Emmanuel E., e Nnamdi V. Ogueke. "Transient Analysis and Performance Prediction of a Solid Adsorption Solar Refrigerator". In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76211.
Texto completo da fonteRelatórios de organizações sobre o assunto "Solar adsorption"
Hansen, Tim, Eric Ringler e William Chatterton. Demonstration of a Solar Thermal Combined Heating, Cooling and Hot Water System Utilizing an Adsorption Chiller for DoD Installations. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2013. http://dx.doi.org/10.21236/ada608953.
Texto completo da fonteFarmer, J. SOLAR-POWERED AEROGEL-BASED ADSORPTIVE AIR CONDITIONING. Office of Scientific and Technical Information (OSTI), fevereiro de 2010. http://dx.doi.org/10.2172/1129983.
Texto completo da fonte