Artigos de revistas sobre o tema "Soils Calcium content"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Soils Calcium content".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cichota, R., I. Vogeler, N. S. Bolan e B. E. Clothier. "Cation influence on sulfate leaching in allophanic soils". Soil Research 45, n.º 1 (2007): 49. http://dx.doi.org/10.1071/sr06070.
Texto completo da fonteRogóż, Antoni, e Monika Tabak. "Contents of selected macroelements in soils, potatoes and fodder beets at variable soil reaction / Zawartość wybranych makroelementów w glebach oraz w ziemniakach i burakach pastewnych przy zmiennym odczynie gleby". Soil Science Annual 66, n.º 1 (1 de março de 2015): 3–9. http://dx.doi.org/10.1515/ssa-2015-0012.
Texto completo da fonteYildiz, Ercan, Mehmet Yaman e Ahmet Sümbül. "RELATIONSHIPS BETWEEN PHYSICAL AND CHEMICAL PROPERTIES OF SOILS AND PLANT NUTRIENT CONTENT OF LEAVES IN THE APPLE ORCHARDS". Current Trends in Natural Sciences 11, n.º 21 (31 de julho de 2022): 139–44. http://dx.doi.org/10.47068/ctns.2022.v11i21.016.
Texto completo da fontePEKCAN, Tülin, Bihter ÇOLAK ESETLİLİ, Hatice Sevim TURAN e Erol AYDOĞDU. "Determination of Nutritional Status of Northwest Anatolia (North Aegean) Olive Growing Areas". MAS Journal Of Applied Sciences 7, n.º 11 (10 de março de 2022): 210–20. http://dx.doi.org/10.52520/masjaps.221.
Texto completo da fonteAl-Tarbouli, Nameer Hamed Yassin. "Adsorption and physicochemical release of iron ions in soils with different content of Calcium Carbonate and Calcium Sulfate". Tikrit journal for agricultural sciences 22, n.º 3 (30 de setembro de 2022): 137–47. http://dx.doi.org/10.25130/tjas.22.3.16.
Texto completo da fonteHan, Guilin, Anton Eisenhauer, Jie Zeng e Man Liu. "Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions". Forests 12, n.º 6 (25 de maio de 2021): 666. http://dx.doi.org/10.3390/f12060666.
Texto completo da fonteLoveland, P. J., J. Hazelden e R. G. Sturdy. "Chemical properties of salt-affected soils in north Kent and their relationship to soil instability". Journal of Agricultural Science 109, n.º 1 (agosto de 1987): 1–6. http://dx.doi.org/10.1017/s0021859600080904.
Texto completo da fonteNeff, J. C., J. W. Harden e G. Gleixner. "Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska". Canadian Journal of Forest Research 35, n.º 9 (1 de setembro de 2005): 2178–87. http://dx.doi.org/10.1139/x05-154.
Texto completo da fonteElisa, A. A., S. Ninomiya, J. Shamshuddin e I. Roslan. "Alleviating aluminium toxicity on an acid sulphate soils in Peninsular Malaysia with application of calcium silicate". Solid Earth Discussions 7, n.º 4 (19 de outubro de 2015): 2903–26. http://dx.doi.org/10.5194/sed-7-2903-2015.
Texto completo da fonteZhong, Yuqing, Guanghua Cai, Shiquan Wang, Huajin Qin, Caihong Zhang e Jiangshan Li. "Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC". Water 14, n.º 19 (28 de setembro de 2022): 3053. http://dx.doi.org/10.3390/w14193053.
Texto completo da fonteAdeleke, Blessing, John Kinuthia e Jonathan Oti. "Strength and Swell Performance of High-Sulphate Kaolinite Clay Soil". Sustainability 12, n.º 23 (5 de dezembro de 2020): 10164. http://dx.doi.org/10.3390/su122310164.
Texto completo da fonteMohammadi, Shima. "Employment of chemical autography method based on ion-exchange membranes for estimation of content of extracted cations within field conditions". АгроЭкоИнфо 1, n.º 49 (5 de fevereiro de 2022): 12. http://dx.doi.org/10.51419/202121112.
Texto completo da fonteLiu, Hailong, Jiuye Zhao, Yu Wang, Nangai Yi e Chunyi Cui. "Strength Performance and Microstructure of Calcium Sulfoaluminate Cement-Stabilized Soft Soil". Sustainability 13, n.º 4 (20 de fevereiro de 2021): 2295. http://dx.doi.org/10.3390/su13042295.
Texto completo da fonteDiomandé, L. B., G. R. Soro, S. Soro e Et Yao Kouamé A. "CHEMICAL SOIL FERTILITY DIAGNOSIS FOR COTTON CROPPING IN NORTHERN COTE D'IVOIRE". International Journal of Research -GRANTHAALAYAH 9, n.º 8 (31 de agosto de 2021): 27–34. http://dx.doi.org/10.29121/granthaalayah.v9.i8.2021.4130.
Texto completo da fonteClough, A., e J. O. Skjemstad. "Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate". Soil Research 38, n.º 5 (2000): 1005. http://dx.doi.org/10.1071/sr99102.
Texto completo da fonteElisa, A. A., S. Ninomiya, J. Shamshuddin e I. Roslan. "Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application". Solid Earth 7, n.º 2 (9 de março de 2016): 367–74. http://dx.doi.org/10.5194/se-7-367-2016.
Texto completo da fontePukish, Arsen. "STUDY OF THE RESTORATION FEATURES OF SOILS THAT WERE INFLUENCED BY FORMATION WATERS". Scientific Bulletin Series D : Mining, Mineral Processing, Non-Ferrous Metallurgy, Geology and Environmental Engineering 31, n.º 2 (2017): 71–76. http://dx.doi.org/10.37193/sbsd.2017.2.10.
Texto completo da fonteFUJIMORI, Yuichi, Masaharu FUKUE, Yoshihisa KATO, Kazuo MASUBUCHI e Takuya SASAJIMA. "SEDIMENTOLOGY BASED ON CALCIUM CARBONATE CONTENT FOR ALLUVIAL SOILS". Doboku Gakkai Ronbunshuu C 63, n.º 4 (2007): 1163–74. http://dx.doi.org/10.2208/jscejc.63.1163.
Texto completo da fonteChoi, Sun-Gyu, Sung-Sik Park, Shifan Wu e Jian Chu. "Methods for Calcium Carbonate Content Measurement of Biocemented Soils". Journal of Materials in Civil Engineering 29, n.º 11 (novembro de 2017): 06017015. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002064.
Texto completo da fonteTonkha, O., O. Bukova, O. Pikovska, I. Fedosiy, O. Menshov e A. Shepel. "SILICON CONTENT, PHYSICAL AND CHEMICAL PROPERTIES OF SOILS OF THE KHMELNYTSKY REGION OF UKRAINE". Visnyk of Taras Shevchenko National University of Kyiv. Geology, n.º 3 (90) (2020): 85–90. http://dx.doi.org/10.17721/1728-2713.90.12.
Texto completo da fonteDai, Lei, e Xiao Xuan Deng. "The Relationship between Calcium Hydroxide Concentration in Pore Solution and the Strength of Stabilized Soils". Advanced Materials Research 989-994 (julho de 2014): 19–22. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.19.
Texto completo da fonteKosiorek, Milena, e Mirosław Wyszkowski. "Macroelement content in plants after amendment application to cobalt-contaminated soil". Journal of Soils and Sediments 21, n.º 4 (26 de fevereiro de 2021): 1769–84. http://dx.doi.org/10.1007/s11368-021-02907-0.
Texto completo da fonteZheng, Xuefang, Bo Liu, Yujing Zhu, Jieping Wang, Haifeng Zhang e Ziran Wang. "Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China". Canadian Journal of Microbiology 65, n.º 7 (julho de 2019): 538–49. http://dx.doi.org/10.1139/cjm-2018-0637.
Texto completo da fonteLiljestrand, H. M., e S. M. Parten. "Design of On-Site Treatment Systems in Caliche Soils". Water Science and Technology 28, n.º 10 (1 de novembro de 1993): 83–87. http://dx.doi.org/10.2166/wst.1993.0210.
Texto completo da fonteBarzegar, AR, RS Murray, GJ Churchman e P. Rengasamy. "The strength of remolded soils as affected by exchangeable cations and dispersible clay". Soil Research 32, n.º 2 (1994): 185. http://dx.doi.org/10.1071/sr9940185.
Texto completo da fonteOlego, Miguel Ángel, Mateo D. Cuesta-Lasso, Fernando Visconti Reluy, Roberto López, Alba López-Losada e Enrique Garzón-Jimeno. "Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil". Plants 11, n.º 21 (27 de outubro de 2022): 2871. http://dx.doi.org/10.3390/plants11212871.
Texto completo da fonteBonomelli, Claudia, Pilar M. Gil e Bruce Schaffer. "Effect of Soil Type on Calcium Absorption and Partitioning in Young Avocado (Persea americana Mill.) Trees". Agronomy 9, n.º 12 (3 de dezembro de 2019): 837. http://dx.doi.org/10.3390/agronomy9120837.
Texto completo da fonteHumeniuk, H. B., V. O. Khomenchuk, N. G. Zinkovska e N. V. Moskalyuk. "ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА ВМІСТУ КАЛЬЦІЮ ТА СТУПЕНЯ КИСЛОТНОСТІ У ҐРУНТАХ ТЕРНОПІЛЬСЬКОЇ ОБЛАСТІ". Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology 78, n.º 4 (4 de junho de 2020): 41–49. http://dx.doi.org/10.25128/2078-2357.19.4.7.
Texto completo da fonteIhsan Ramadhan, Payizan, e Lazkeen Ahmed Merween Mehmedany. "Zinc Adsorption in Different Calcareous Soils". Journal Of Duhok University 23, n.º 2 (14 de dezembro de 2020): 118–30. http://dx.doi.org/10.26682/ajuod.2020.23.2.15.
Texto completo da fonteE.S., Koybakova, Mustafayev M.G. e Amanbaeva B.Sh. "Technological methods of improvement of degraded soils under the sowing of legumes and groat cultures of the South Kazakhstan". Ekologiya i stroitelstvo 2 (2016): 22–27. http://dx.doi.org/10.35688/2413-8452-2016-02-004.
Texto completo da fonteAlleoni, Luís Reynaldo Ferracciú, Otávio Antonio de Camargo e José Maria Aires Silva Valadares. "CORRELATIONS BETWEEN HOT CALCIUM CHLORIDE-EXTRACTED BORON AND CHEMICAL AND PHYSICAL ATTRIBUTES OF SOME BRAZILIAN SOILS". Scientia Agricola 56, n.º 2 (1999): 295–300. http://dx.doi.org/10.1590/s0103-90161999000200006.
Texto completo da fonteJakovljevic, Miodrag, Nikola Kostic e Svetlana Antic-Mladenovic. "The availability of base elements (Ca, Mg, Na, K) in some important soil types in Serbia". Zbornik Matice srpske za prirodne nauke, n.º 104 (2003): 11–21. http://dx.doi.org/10.2298/zmspn0304011j.
Texto completo da fonteHossen, MAM, SA Lira, MY Mia e AKMM Rahman. "Soil Nutrient Status of Brahmaputra Floodplain Area in Tangail Sadar Upazila for Agricultural Uses". Journal of Environmental Science and Natural Resources 8, n.º 2 (29 de fevereiro de 2016): 11–14. http://dx.doi.org/10.3329/jesnr.v8i2.26856.
Texto completo da fonteNavarro-Pedreño, Jose, María Almendro-Candel, Ignacio Gómez Lucas, Manuel Jordán Vidal, Jaume Bech Borras e Antonis Zorpas. "Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain)". Sustainability 10, n.º 12 (1 de dezembro de 2018): 4534. http://dx.doi.org/10.3390/su10124534.
Texto completo da fonteHasanov, R. G., G. S. Hasanov e V. K. Valiev. "NEUTRALIZATION OF PHENOL-CONTAMINATED SOILS". Chemical Problems 20, n.º 2 (2022): 154–63. http://dx.doi.org/10.32737/2221-8688-2022-2-154-163.
Texto completo da fonteKlenov, Boris M., e Mikhail V. Yakutin. "CALCIUM IN SOIL HUMUS OF WEST-SIBERIAN TRANSECT". Interexpo GEO-Siberia 4, n.º 2 (8 de julho de 2020): 64–70. http://dx.doi.org/10.33764/2618-981x-2020-4-2-64-70.
Texto completo da fonteBahloul, Ouassila, Hocine Ziani e Samir Benmoussa. "Impact of Calcium Chloride on the Microstructure of a Collapsible Soil". Annales de Chimie - Science des Matériaux 46, n.º 4 (31 de agosto de 2022): 201–6. http://dx.doi.org/10.18280/acsm.460405.
Texto completo da fonteJaworska, Hanna, Agata Bartkowiak e Szymon Różański. "The influence of anthropogenically increased pH on the content and the mobility of nickel in arable soils in the surroundings of “Małogoszcz” cement plant". Soil Science Annual 64, n.º 1 (1 de junho de 2013): 14–18. http://dx.doi.org/10.2478/ssa-2013-0003.
Texto completo da fonteGersztyn, Leszek, Anna Karczewska e Bernard Gałka. "Influence of pH on the solubility of arsenic in heavily contaminated soils / Wpływ pH na rozpuszczalność arsenu w glebach silnie zanieczyszczonych". Ochrona Srodowiska i Zasobów Naturalnych 24, n.º 3 (1 de setembro de 2013): 7–11. http://dx.doi.org/10.2478/oszn-2013-0031.
Texto completo da fonteAhmed, Niaz, Umama Habib, Uzma Younis, Inam Irshad, Subhan Danish, Ashfaq Ahmad Rahi e Tariq Muhammad Munir. "Growth, chlorophyll content and productivity responses of maize to magnesium sulphate application in calcareous soil". Open Agriculture 5, n.º 1 (9 de dezembro de 2020): 792–800. http://dx.doi.org/10.1515/opag-2020-0023.
Texto completo da fontePochernyaeva, E. P., V. O. Okata, O. V. Kotovych e V. M. Yakovenko. "Influence of irrigated mineralized waters on properties of ordinary chernozem in the conditions of Prysamaria Dniprovske". Ecology and Noospherology 31, n.º 2 (25 de outubro de 2020): 93–98. http://dx.doi.org/10.15421/032015.
Texto completo da fonteSadykhova, M. "Physical and Chemical Indicators of Meadow Brown Soils". Bulletin of Science and Practice 7, n.º 7 (15 de julho de 2021): 39–42. http://dx.doi.org/10.33619/2414-2948/68/05.
Texto completo da fonteJiménez-Ballesta, Raimundo, Sandra Bravo, José Angel Amorós, Caridad Pérez-de los Reyes, Jesús García-Pradas e Francisco J. García-Navarro. "Understanding the Quality of Local Vineyard Soils in Distinct Viticultural Areas: A Case Study in Alcubillas (La Mancha, Central Spain)". Agriculture 10, n.º 3 (6 de março de 2020): 66. http://dx.doi.org/10.3390/agriculture10030066.
Texto completo da fonteJia, Yanlong, Tangfu Xiao, Jialong Sun, Zengping Ning, Enzong Xiao, Xiaolong Lan e Yuxiao Chen. "Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.)". International Journal of Environmental Research and Public Health 20, n.º 1 (20 de dezembro de 2022): 4. http://dx.doi.org/10.3390/ijerph20010004.
Texto completo da fonteKowalska, Joanna, Bartłomiej Kajdas e Tomasz Zaleski. "Variability of morphological, physical and chemical properties of soils derived from carbonate-rich parent material in the Pieniny Mountains (south Poland)". Soil Science Annual 68, n.º 1 (28 de março de 2017): 27–38. http://dx.doi.org/10.1515/ssa-2017-0004.
Texto completo da fonteBrennan, R. F., M. D. A. Bolland e R. W. Bell. "Increased risk of zinc deficiency in wheat on soils limed to correct soil acidity". Soil Research 43, n.º 5 (2005): 647. http://dx.doi.org/10.1071/sr04162.
Texto completo da fonteKrzyżaniak, M., e J. Lemanowicz. "Enzymatic activity of the Kuyavia Mollic Gleysols (Poland) against their chemical properties ". Plant, Soil and Environment 59, No. 8 (31 de julho de 2013): 359–65. http://dx.doi.org/10.17221/211/2013-pse.
Texto completo da fonteBernini, Thiago Andrade, Marcos Gervasio Pereira, Lúcia Helena Cunha dos Anjos, Daniel Vidal Perez, Ademir Fontana, Sebastião Barreiros Calderano e Paulo Guilherme Salvador Wadt. "Quantification of aluminium in soil of the Solimões Formation, Acre State, Brazil". Revista Brasileira de Ciência do Solo 37, n.º 6 (dezembro de 2013): 1587–98. http://dx.doi.org/10.1590/s0100-06832013000600015.
Texto completo da fonteWu, Dazhi, Zilong Zhang, Keyu Chen e Linling Xia. "Experimental Investigation and Mechanism of Fly Ash/Slag-Based Geopolymer-Stabilized Soft Soil". Applied Sciences 12, n.º 15 (25 de julho de 2022): 7438. http://dx.doi.org/10.3390/app12157438.
Texto completo da fonteZhu, Wanyi, Mengnan Yuan, Fanmin He, Yang Zhao, Zhiyang Xiao, Qian Wang, Fanyou Meng e Qiang Tang. "Effects of Hydroxypropyl Methylcellulose (HPMC) on the Reinforcement of Sand by Microbial-Induced Calcium Carbonate Precipitation (MICP)". Applied Sciences 12, n.º 11 (25 de maio de 2022): 5360. http://dx.doi.org/10.3390/app12115360.
Texto completo da fonte