Literatura científica selecionada sobre o tema "Soil phosphorus"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Soil phosphorus".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Soil phosphorus"
Shah, Asad, Jing Huang, Muhammad Numan Khan, Tianfu Han, Sehrish Ali, Nano Alemu Daba, Jiangxue Du et al. "Sole and Combined Application of Phosphorus and Glucose and Its Influence on Greenhouse Gas Emissions and Microbial Biomass in Paddy Soils". Agronomy 12, n.º 10 (30 de setembro de 2022): 2368. http://dx.doi.org/10.3390/agronomy12102368.
Texto completo da fonteXu, Gang, Mengyu Yue, Jiawei Song e Xiaobing Chen. "Development of soil phosphorus storage capacity for phosphorus retention/release assessment in neutral or alkaline soils". Plant, Soil and Environment 68, No. 3 (16 de março de 2022): 146–54. http://dx.doi.org/10.17221/482/2021-pse.
Texto completo da fonteMatula, J. "Relationship between phosphorus concentration in soil solution and phosphorus in shoots of barley". Plant, Soil and Environment 57, No. 7 (14 de julho de 2011): 307–14. http://dx.doi.org/10.17221/149/2011-pse.
Texto completo da fonteSánchez-Esteva, Sara, Maria Knadel, Rodrigo Labouriau, Gitte H. Rubæk e Goswin Heckrath. "Total Phosphorus Determination in Soils Using Laser-Induced Breakdown Spectroscopy: Evaluating Different Sources of Matrix Effects". Applied Spectroscopy 75, n.º 1 (24 de agosto de 2020): 22–33. http://dx.doi.org/10.1177/0003702820949560.
Texto completo da fonteAdil, Mihoub. "Citric acid acidification of wheat straw derived biochar for overcoming nutrient deficiency in alkaline calcareous soil (Case of Phosphorus)". International Journal of Agricultural Science and Food Technology 8, n.º 3 (27 de agosto de 2022): 248–52. http://dx.doi.org/10.17352/2455-815x.000173.
Texto completo da fonteMcKenzie, R. H., e E. Bremer. "Relationship of soil phosphorus fractions to phosphorus soil tests and fertilizer response". Canadian Journal of Soil Science 83, n.º 4 (1 de agosto de 2003): 443–49. http://dx.doi.org/10.4141/s02-079.
Texto completo da fonteBenhua, Sun, Cui Quanhong, Guo Yun, Yang Xueyun, Zhang Shulan, Gao Mingxia e Hopkins David W. "Soil phosphorus and relationship to phosphorus balance under long-term fertilization". Plant, Soil and Environment 64, No. 5 (14 de maio de 2018): 214–20. http://dx.doi.org/10.17221/709/2017-pse.
Texto completo da fonteUUSITALO, R., E. TURTOLA e J. GRÖNROOS. "Finnish trends in phosphorus balances and soil test phosphorus". Agricultural and Food Science 16, n.º 4 (4 de dezembro de 2008): 301. http://dx.doi.org/10.2137/145960607784125339.
Texto completo da fonteLei, Hong Jun, Xin Liu, Bei Dou Xi e Duan Wei Zhu. "Evaluation on a Novel Phosphorus Fractionation Method in Acid Soils". Applied Mechanics and Materials 204-208 (outubro de 2012): 272–78. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.272.
Texto completo da fonteBhodiwal, Shweta, e Tansukh Barupal. "Phosphate solubilizing microbes: an incredible role for plant supplements". MOJ Ecology & Environmental Sciences 7, n.º 5 (21 de dezembro de 2022): 170–72. http://dx.doi.org/10.15406/mojes.2022.07.00263.
Texto completo da fonteTeses / dissertações sobre o assunto "Soil phosphorus"
Wijesundara, Sunetra M. "Relationships of soil test phosphorus with soil properties and phosphorus forms". Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-151136/.
Texto completo da fonteroberts, john christopher. "Impact of Manure and Soil Test Phosphorus on Phosphorus Runoff from Soils Subjected to Simulated Rainfall". NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-06162005-123000/.
Texto completo da fonteSekhon, Bharpoor Singh. "Modeling of soil phosphorus sorption and control of phosphorus pollution with acid mine drainage floc". Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2530.
Texto completo da fonteTitle from document title page. Document formatted into pages; contains xiv, 210 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Ebuele, Victor Pghogho. "Phosphorus speciation in soil and plants". Thesis, Bangor University, 2016. https://research.bangor.ac.uk/portal/en/theses/phosphorus-speciation-in-soil-and-plants(c9a2b08e-cca7-48ad-ac49-79b772d17602).html.
Texto completo da fontePierzynski, Joy. "THE EFFECTS OF P FERTILIZER ADDITION ON P TRANSFORMATIONS ON HIGH-P FIXING AND GRASSLAND SOILS". Diss., Kansas State University, 2016. http://hdl.handle.net/2097/34548.
Texto completo da fonteDepartment of Agronomy
Ganga M. Hettiarachchi
Although phosphorus (P) is an essential nutrient for the growth of plants, it is one of the most limiting nutrients in terms of availability as a high proportion of applied P rapidly transforms into insoluble forms with low solubility in soils. To further understand the fate of P applied to soils, two separate but related studies using three high P-fixing soil types each were used for which the objectives were to investigate the mobility, availability, and reaction products from two granular and one liquid P fertilizer alone or plus a fertilizer enhancement product. Energy dispersive spectroscopy showed a substantial amount of P remained in the granule following a 5-week incubation. At the end of the 35-day incubation period there was evidence that the fluid fertilizer was superior over the granular sources in terms of enhanced diffusion and extractability of P for three calcareous soils with varying levels of CaCO3. Phosphorus x-ray absorption near-edge structure (XANES) spectroscopy results in conjunction with resin-extractable P indicated a strong negative correlation between Ca-P solids formed and P extractability, suggesting that degree of Ca-P formation limits P solubility. For the three acidic P-fixing soils the results were complex. In two out of three acid soils, liquid P treatments diffused farther from the application point than the granular treatments. Phosphorus XANES results suggested that Fe-P or Al-P interactions control the overall P solubility. Integration of pH, resin extractable-P and XANES results suggested the P retention mechanism was either dominated by adsorption or precipitation depending on soil pH. More acidic soil conditions favored precipitation. The objectives of the third study were to observe how long-term (14 years) addition of P with or without N influences the inorganic and organic P pools in a native grassland soil using sequential fractionation, XANES, and 31P-nuclear magnetic resonance (NMR) spectroscopy. The overall results suggested that P and N fertilization and associated changes in plant productivity induced significant changes in soil P pools such as Ca-P, phytic acid, monoesters, and residual forms of P. The addition of P alone induced formation of inorganic P forms while the addition of P and N induced transformation of residual P forms into more labile and/or organic P forms.
Abou, Nahra Joumana. "Modeling phosphorus transport in soil and water". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102946.
Texto completo da fonteThe ability of the NICA model to describe phosphate (PO4) adsorption to soil particles was tested using soils collected from agricultural fields in southern Quebec. The surface charge and PO4 adsorption capacity of these soils were measured. Results were used to estimate the NICA model parameters using a non-linear fitting function. The NICA model accurately described the surface charge of these soils and the PO4 adsorption processes.
The HYDRUS-1D model was applied to simulate water flow and PO4 transport in re-constructed soil column experiments. The HYDRUS-1D model was calibrated based on physical and chemical parameters that were estimated from different experiments. Overall, the HYDRUS-1D model successfully simulated the water flow in the columns; however, it overestimated the final adsorbed PO4 concentrations in the soil. The discrepancies in the results suggested that the HYDRUS-1D model could not account for the differences in the soil structure found in the columns, or that the Freundlich isotherm could not adequately describe PO4 adsorption.
The HYDRUS-NICA model was calibrated and validated with results from re-packed column experiments. The simulated results were then compared with results obtained by the HYDRUS-1D model. The overall goodness-of-fit for the HYDRUS-1D model simulations was classified as poor. The HYDRUS-NICA model improved significantly the prediction of PO4 transport, with the coefficient of modeling efficiency values being close to unity, and the coefficient of residual mass values being close to zero. The HYDRUS-NICA model can be used as a tool to improve the prediction of PO4 transport at the field scale.
A, Heskett Richard. "Determining soil phosphorus concentrations using cattail indicators". Virtual Press, 1997. http://liblink.bsu.edu/uhtbin/catkey/1048396.
Texto completo da fonteDepartment of Biology
Undercoffer, Jason. "Monitoring Phosphorus Transport and Soil Test Phosphorus From Two Distinct Drinking Water Treatment Residual Application Methods". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243532451.
Texto completo da fonteNorton, E. R., J. C. Silvertooth e L. J. Clark. "Phosphorus Fertility Evaluation in Graham County". College of Agriculture, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/197714.
Texto completo da fonteNorton, E. R., e L. J. Clark. "Phosphorus Fertility Evaluation in Graham County". College of Agriculture, University of Arizona (Tucson, AZ), 2003. http://hdl.handle.net/10150/197930.
Texto completo da fonteLivros sobre o assunto "Soil phosphorus"
Lal, Rattan, e B. A. Stewart, eds. Soil Phosphorus. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2016] |: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327.
Texto completo da fonteMenon, R. G. The Pi̳ soil phosphorus test: A new approach to testing for soil phosphorous. Muscle Shoals, Ala: International Fertilizer Development Center, 1989.
Encontre o texto completo da fonteCycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Wiley, 1986.
Encontre o texto completo da fonteStevenson, F. J. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. 2a ed. New York: Wiley, 1999.
Encontre o texto completo da fonteHarrison, A. F. Soil organic phosphorus: A review of world literature. Wallingford, U.K: CAB International, 1987.
Encontre o texto completo da fonteDeWolfe, James. Water residuals to reduce soil phosphorus. Denver, Colo: Awwa Research Foundation : American Water Works Association, 2006.
Encontre o texto completo da fonteH, Tunney, ed. Phosphorus loss from soil to water. Wallingford, OX: CAB International, 1997.
Encontre o texto completo da fonteE, Johnston A., Curtin Denis e Food and Agriculture Organization of the United Nations., eds. Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behaviour with agronomic information. Rome: Food and Agriculture Organization of the United Nations, 2008.
Encontre o texto completo da fonteCzępińska-Kamińska, Danuta. Wpływ procesów glebotwórczych na rozmieszczenie mineralnych związków fosforu w glebach. Warszawa: Wydawn. SGGW, 1992.
Encontre o texto completo da fonteSchindler, Frank V. Manure management BMPs based on soil phosphorus. [Pierre, S.D: Dept. of Environment and Natural Resources, 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Soil phosphorus"
Tate, K. R. "Soil Phosphorus". In Soil Organic Matter and Biological Activity, 329–77. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5105-1_10.
Texto completo da fontePrasad, Rajendra, Yashbir Singh Shivay, Kaushik Majumdar e Samendra Prasad. "Phosphorus Management". In Soil Phosphorus, 81–113. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-6.
Texto completo da fonteFilippelli, Gabriel M. "The Global Phosphorus Cycle". In Soil Phosphorus, 1–21. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-2.
Texto completo da fonteStewart, B. A., Pramod Pokhrel e Mahendra Bhandari. "Positive and Negative Effects of Phosphorus Fertilizer on U.S. Agriculture and the Environment". In Soil Phosphorus, 23–42. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-3.
Texto completo da fonteGoll, Daniel Sebastian. "Coupled Cycling of Carbon, Nitrogen, and Phosphorus". In Soil Phosphorus, 43–63. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-4.
Texto completo da fontePrasad, Rajendra, Samendra Prasad e Rattan Lal. "Phosphorus in Soil and Plants in Relation to Human Nutrition and Health". In Soil Phosphorus, 65–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-5.
Texto completo da fonteKatsev, Sergei. "Phosphorus Effluxes from Lake Sediments". In Soil Phosphorus, 115–31. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-7.
Texto completo da fonteBlake, George R., Gary C. Steinhardt, X. Pontevedra Pombal, J. C. Nóvoa Muñoz, A. Martínez Cortizas, R. W. Arnold, Randall J. Schaetzl et al. "Phosphorus Cycle". In Encyclopedia of Soil Science, 547–55. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_433.
Texto completo da fonteTiessen, Holm, Maria Victoria Ballester e Ignacio Salcedo. "Phosphorus and Global Change". In Soil Biology, 459–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15271-9_18.
Texto completo da fonteFox, Thomas R., Bradley W. Miller, Rafael Rubilar, Jose L. Stape e Timothy J. Albaugh. "Phosphorus Nutrition of Forest Plantations: The Role of Inorganic and Organic Phosphorus". In Soil Biology, 317–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15271-9_13.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Soil phosphorus"
Skyba, O. I., L. Ya Fedonyuk, O. M. Yarema e K. Lesnyak-Mochuk. "DEPENDENCE OF PHOSPHATE CONTENT IN WATER ON MOBILE AND TOTAL FORMS OF PHOSPHORUS IN SOIL IN AGRICULTURAL TERRITORY OF TERNOPIL REGION (UKRAINE)". In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-213-217.
Texto completo da fonteJ. S. Abou Nohra, C. A. Madramootoo e W. H. Hendershot. "Modeling Phosphorus Transport in Soil and Water". In 2004, Ottawa, Canada August 1 - 4, 2004. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2004. http://dx.doi.org/10.13031/2013.16187.
Texto completo da fonteZhu, Hong-xia, e Xiao-min Chen. "Spatial Variability of Soil Phosphorus Based on Geostatistics". In 2010 International Conference on Multimedia Technology (ICMT). IEEE, 2010. http://dx.doi.org/10.1109/icmult.2010.5631432.
Texto completo da fonteTomić, Dalibor, Vladeta Stevović, Dragan Đurović, Milomirka Madić, Miloš Marjanović e Nenad Pavlović. "ALTERNATIVNI NAČINI SNABDEVANJA VIŠEGODIŠNJIH KRMNIH LEGUMINOZA FOSFOROM". In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.033t.
Texto completo da fonteRUDZIANSKAITĖ, Aurelija, e Stefanija MISEVIČIENĖ. "INVESTIGATION OF PHOSPHORUS CHANGE IN A SANDY LOAM ASSOCIATED WITH CONTROLLED DRAINAGE". In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.066.
Texto completo da fonteHua Zhou, Wan-tai Yu, Qiang Ma e Huai-xiang Ding. "Soil inorganic phosphorus fractions under different modes of fertilization". In 2010 Second International Conference on Computational Intelligence and Natural Computing (CINC). IEEE, 2010. http://dx.doi.org/10.1109/cinc.2010.5643757.
Texto completo da fonteGu, Chunhao, Chongyang Li, Yong-Feng Hu e Andrew Margenot. "Impacts of Agricultural Activities on Soil Phosphorus Biogeochemical Transformations". In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.887.
Texto completo da fonteMallarino, Antonio. "Soil Phosphorus Testing for Crop Production and Environmental Purposes". In Proceedings of the 10th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 1999. http://dx.doi.org/10.31274/icm-180809-643.
Texto completo da fonteZheng, Lihua, Won Suk Lee, Minzan Li, Anurag Katti, Ce Yang, Han Li e Hong Sun. "Analysis of soil phosphorus concentration based on Raman spectroscopy". In SPIE Asia-Pacific Remote Sensing, editado por Allen M. Larar, Hyo-Sang Chung, Makoto Suzuki e Jian-yu Wang. SPIE, 2012. http://dx.doi.org/10.1117/12.977436.
Texto completo da fonteM B McGechan. "Modelling Through Soil Losses of Phosphorus to Surface Waters". In 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.7372.
Texto completo da fonteRelatórios de organizações sobre o assunto "Soil phosphorus"
Henning, Stanley. Soil and Crop Responsesto Foliar-Applied Phosphorus. Ames: Iowa State University, Digital Repository, 2006. http://dx.doi.org/10.31274/farmprogressreports-180814-2270.
Texto completo da fonteMallarino, Antonio P., e David Rueber. Alfalfa Hay and Soil-Test Phosphorus Responses to Long-term Phosphorus Fertilization Strategies. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/farmprogressreports-180814-2571.
Texto completo da fonteHenning, Stanley. Corn, Soybean, and Soil Responses to Phosphorus Fertilizer. Ames: Iowa State University, Digital Repository, 2007. http://dx.doi.org/10.31274/farmprogressreports-180814-2501.
Texto completo da fonteHenning, Stanley. Crop and Soil Responses to Phosphorus and Potassium. Ames: Iowa State University, Digital Repository, 2007. http://dx.doi.org/10.31274/farmprogressreports-180814-2505.
Texto completo da fonteDoorenbos, Russell, e Stanley Henning. Crop and Soil Responses to Phosphorus and Potassium. Ames: Iowa State University, Digital Repository, 2003. http://dx.doi.org/10.31274/farmprogressreports-180814-404.
Texto completo da fonteMallarino, Antonio, John Jones, Louis Thompson e Kenneth Pecinovsky. Corn and Soybean Grain Yield Response to Different Phosphorus Fertilization Rates and Soil-Test Phosphorus Levels. Ames: Iowa State University, Digital Repository, 2018. http://dx.doi.org/10.31274/farmprogressreports-180814-1987.
Texto completo da fonteShenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen e Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, junho de 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Texto completo da fonteShetterly, Benjamin. Soil Phosphorus Characterization and Vulnerability to Release in Urban Stormwater Bioretention Facilities. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.6247.
Texto completo da fonteCurrie, Steven, Christine VanZomeren e Jacob Berkowitz. Utilizing wetlands for phosphorus reduction in Great Lakes watersheds : a review of available literature examining soil properties and phosphorus removal efficiency. Environmental Laboratory (U.S.), outubro de 2017. http://dx.doi.org/10.21079/11681/24838.
Texto completo da fonteMallarino, Antonio P., e David Rueber. Grain Yield, Phosphorus Removal, and Soil Phosphorus Long-Term Trends as Affected by Fertilization and Placement Methods in Corn-Soybean Rotations. Ames: Iowa State University, Digital Repository, 2008. http://dx.doi.org/10.31274/farmprogressreports-180814-278.
Texto completo da fonte