Literatura científica selecionada sobre o tema "Soil nutrient"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Soil nutrient".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Soil nutrient"
Thomson, V. P., e M. R. Leishman. "Survival of native plants of Hawkesbury Sandstone communities with additional nutrients: effect of plant age and habitat". Australian Journal of Botany 52, n.º 2 (2004): 141. http://dx.doi.org/10.1071/bt03047.
Texto completo da fonteSeman-Varner, R., R. McSorley e R. N. Gallaher. "Soil nutrient and plant responses to solarization in an agroecosystem utilizing an organic nutrient source". Renewable Agriculture and Food Systems 23, n.º 2 (27 de maio de 2008): 149–54. http://dx.doi.org/10.1017/s1742170507002001.
Texto completo da fonteMoore, James A., Mark J. Kimsey, Mariann Garrison-Johnston, Terry M. Shaw, Peter Mika e Jaslam Poolakkal. "Geologic Soil Parent Material Influence on Forest Surface Soil Chemical Characteristics in the Inland Northwest, USA". Forests 13, n.º 9 (27 de agosto de 2022): 1363. http://dx.doi.org/10.3390/f13091363.
Texto completo da fonteMa, Qifu, Zed Rengel e Terry Rose. "The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review". Soil Research 47, n.º 1 (2009): 19. http://dx.doi.org/10.1071/sr08105.
Texto completo da fonteComerford, N. B., W. P. Cropper, Jr., Hua Li, P. J. Smethurst, K. C. J. Van Rees, E. J. Jokela, H. Adégbidi e N. F. Barros. "Soil supply and nutrient demand (SSAND): A general nutrient uptake model and an example of its application to forest management". Canadian Journal of Soil Science 86, n.º 4 (1 de agosto de 2006): 655–73. http://dx.doi.org/10.4141/s05-112.
Texto completo da fonteRobson, AD, NE Longnecker e LD Osborne. "Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils". Australian Journal of Experimental Agriculture 32, n.º 7 (1992): 879. http://dx.doi.org/10.1071/ea9920879.
Texto completo da fonteEntry, James A., e William H. Emmingham. "Influence of forest age on nutrient availability and storage in coniferous soils of the Oregon Coast Range". Canadian Journal of Forest Research 25, n.º 1 (1 de janeiro de 1995): 114–20. http://dx.doi.org/10.1139/x95-014.
Texto completo da fonteWibiralske, Anne W., Roger Earl Latham e Arthur H. Johnson. "A biogeochemical analysis of the Pocono till barrens and adjacent hardwood forest underlain by Wisconsinan and Illinoian till in northeastern Pennsylvania". Canadian Journal of Forest Research 34, n.º 9 (1 de setembro de 2004): 1819–32. http://dx.doi.org/10.1139/x04-047.
Texto completo da fonteMylavarapu, R. S. "Diagnostic Nutrient Testing". HortTechnology 20, n.º 1 (fevereiro de 2010): 19–22. http://dx.doi.org/10.21273/horttech.20.1.19.
Texto completo da fonteČekstere, Gunta, Anita Osvalde e Māris Laiviņš. "Mineral Nutrition of Young Ash in Latvia". Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 70, n.º 3 (1 de junho de 2016): 138–49. http://dx.doi.org/10.1515/prolas-2016-0022.
Texto completo da fonteTeses / dissertações sobre o assunto "Soil nutrient"
Esposito, Nicole C. "Soil Nutrient Availability Properties of Biochar". DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1096.
Texto completo da fonteKraus, Tamara Esther Caroline. "Tannins and nutrient dynamics in forest soils : plant-litter-soil interactions /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Texto completo da fonteFerreira, Francisco Jardelson. "Fertilization rose bushes based on nutrient balance in the soil - plant system". Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17134.
Texto completo da fonteRose is an economically important crop for the national and the international market and due to this fact generates income to the Ceara State. Rose is a demanding crop in relation to fertilizers, requiring knowledge of soil fertility, nutritional plant requirements and nutrients use efficiency to obtain adequate fertilization. Based on the nutritional balance through the use of mechanistic and empirical models, it is possible to develop a system to quantify the plant nutrients demands to achieve a given productivity. This paper aims to establish parameters of a fertilizer and lime recommendation system to rose crop, based on the plant nutritional balance. The experiment was conducted at the company Cearosa in SÃo Benedito - CE. Plants will be collected during five months and once a month, five rose plants from four varieties (Top Secret, Avalanche, Attache and Ambience) As contradictory Airlines plants Were grinded. Samples will be ground and nutrients content will be determined: N, P, K, Ca, Mg, S, B, Fe, Mn, e Zn. Every sampling plant time, were also soil samples collected at two depths (0-20 and 20-40 cm) In which they underwent fertility analysis. To estimate the fertilizer recommendation, the system was be subdivided into requirement subsystem (REQ), which includes the plant nutrients demands, considering the recovery efficiency of the nutrients to be applied and a rate to achieve the "sustainability" criteria and the supply subsystem (SUP) that comprises the soil nutrient supply. After determining the total REQ and SUP, held -if the nutritional balance, and if the result is positive (REQ> SUP), fertilizers application is recommended and if the result negative or zero (REQ ≤ SUP), fertilizers application is not recommended. The system estimated that there is excess nitrogen and phosphorus fertilization for all cultivars , however , there needs to be supplemental potassium fertilizer . The system estimated that the soil is able to meet the demand of plants for P and Fe for all cultivars , however , there must be supplementary nitrogen fertilizer , potassium . As for micronutrients , the system estimated that there is need for additional fertilizer for Zn in all rosebushes and Mn for the rosebushes "Top Secret " and " Avalnche " , however with very close recommendation the optimal dose , ie equal to zero
A roseira à uma cultura de grande valor no mercado interno e externo, devido a esse fato, as rosas geram benefÃcios para o estado do CearÃ. à uma cultura muito exigente em relaÃÃo à adubaÃÃo, sendo necessÃrios conhecimentos da fertilidade do solo, exigÃncias nutricionais da planta e eficiÃncia na utilizaÃÃo de nutrientes, para obtenÃÃo de uma adubaÃÃo adequada. Partindo a hipÃtese de que conhecendo-se o balanÃo nutricional da cultura, levando-se em consideraÃÃo a demanda de nutrientes pela cultura para alcanÃar uma dada produtividade e o suprimento de nutrientes pelo solo, à possÃvel determinar a quantidade de nutrientes a ser adicionada na fertilizaÃÃo do solo. O presente trabalho tem como objetivo determinar com base no balanÃo de nutrientes solo-planta a quantidade de nutrientes a ser adicionada no solo para cultura da roseira. O experimento foi conduzido na empresa Cearosa, em SÃo Benedito - CE, as plantas foram coletadas durante cinco meses, sendo uma vez por mÃs, amostrando cinco plantas aleatÃrias, de quatro cultivares de rosas: (Top Secret, Avalanche, Attache e Ambience). As partes aÃreas das plantas foram moÃdas e mineralizadas para determinaÃÃo dos teores dos nutrientes: N, P, K, Ca, Mg, S, B, Fe, Mn e Zn. Simultaneamente a coleta de plantas, tambÃm foram coletadas amostras de solo em duas profundidades, camada de 0 a 20 e de 20 a 40cm. Na qual foram submetidas à anÃlise de fertilidade. Para estimar a recomendaÃÃo de adubaÃÃo o sistema foi subdividido em: subsistema requerimento (REQ), que contempla a demanda de nutrientes pela planta, considerando a eficiÃncia de recuperaÃÃo dos nutrientes a serem aplicados, alÃm de uma dose que atende ao critÃrio de âsustentabilidadeâ e o subsistema suprimento (SUP), que corresponde à oferta de nutrientes pelo solo. ApÃs a determinaÃÃo do REQ total e SUP total, realizou -se o balanÃo nutricional, no qual se apresentar resultado positivo (REQ > SUP), recomenda-se a aplicaÃÃo de fertilizantes, e negativo ou nulo (REQ ≤ SUP), nÃo serà recomendado aplicar fertilizantes. O sistema estimou que o solo à capaz de suprir a demanda das plantas para P e Fe para todas as cultivares, no entanto, à necessÃrio que haja complementaÃÃo de adubaÃÃo nitrogenada, potÃssica. Assim como para os micronutrientes, o sistema estimou que hà necessidade de complementaÃÃo de adubaÃÃo, para Zn em todas as roseiras e Mn para as roseiras âTop secretâ e âAvalncheâ, no entanto com a recomendaÃÃo bem prÃximos a dose ideal, ou seja, igual a zero
Barthelemy, Hélène. "Herbivores influence nutrient cycling and plant nutrient uptake : insights from tundra ecosystems". Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120191.
Texto completo da fonteVisser, Saskia M. "Modelling nutrient erosion by wind and water in northern Burkina Faso /". Wageningen : Wageningen University and Research Centre, 2004. http://www.mannlib.cornell.edu/cgi-bin/toc.cgi?5046904.
Texto completo da fonteMills, Carolyn Lesley. "The nutrient economy of grazed grassland". Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361226.
Texto completo da fonteSika, Makhosazana Princess. "Effect of biochar on chemistry, nutrient uptake and fertilizer mobility in sandy soil". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20272.
Texto completo da fonteENGLISH ABSTRACT: Biochar is a carbon-rich solid material produced during pyrolysis, which is the thermal degradation of biomass under oxygen limited conditions. Biochar can be used as a soil amendment to increase the agronomic productivity of low potential soils. The aim of this study was to investigate the effect of applying locally-produced biochar on the fertility of low-nutrient holding, sandy soil from the Western Cape, and to determine the optimum biochar application level. Furthermore, this study investigates the effect of biochar on the leaching of an inorganic nitrogen fertilizer and a multi-element fertilizer from the sandy soil. The biochar used in this study was produced from pinewood sawmill waste using slow pyrolysis (450 °C). The soil used was a leached, acidic, sandy soil from Brackenfell, Western Cape. In the first study, the sandy soil mixed with five different levels of biochar (0, 0.05, 0.5, 0.5 and 10.0 % w/w) was chemically characterised. Total carbon and nitrogen, pH, CEC and plant-available nutrients and toxins were determined. The application of biochar resulted in a significant increase in soil pH, exchangeable basic cations, phosphorus and water holding capacity. A wheat pot trial using the biochar-amended soil was carried out for 12 weeks and to maturity (reached at 22 weeks). The trial was conducted with and without the addition of a water-soluble broad spectrum fertilizer. Results showed that biochar improved wheat biomass production when added at low levels. The optimum biochar application level in the wheat pot trial was 0.5 % (approximately 10 t ha-1 to a depth of 15 cm) for the fertilized treatments (21 % biomass increase), and 2.5 % (approximately 50 t ha-1 to a depth of 15 cm) for unfertilized treatments (29 % biomass increase). Since most biochars are alkaline and have a high C:N ratio, caution should be taken when applying it on poorly buffered sandy soil or without the addition of sufficient nitrogen to prevent nutrient deficiencies. In the second study, leaching columns packed with sandy soil and biochar (0, 0.5, 2.5 and 10.0 % w/w) were set up to determine the effect of biochar on inorganic nitrogen fertilizer leaching over a period of 6 weeks. It was found that biochar (0.5, 2.5, and 10.0 % w/w) significantly reduced the leaching of ammonium (12, 50 and 86 % respectively) and nitrate (26, 42 and 95 % respectively) fertilizer from the sandy soil. Moreover, biochar (0.5 %) significantly reduced the leaching of basic cations, phosphorus and certain micronutrients. This study demonstrated the potential of biochar as an amendment of acidic, sandy soils. Our findings suggest that an application rate of 10 t ha-1 should not be exceeded when applying biochar on these soils. Furthermore, biochar application can significantly reduce nutrient leaching in sandy agricultural soils.
AFRIKAANSE OPSOMMING: Biochar is ʼn koolstof-ryke, soliede materiaal geproduseer gedurende pirolise, wat die termiese degradasie van biomassa onder suurstof-beperkte omstandighede behels. Biochar kan gebruik word as ʼn grondverbeterings middel om die agronomiese produktiwiteit van grond te verhoog. Die doel van hierdie studie was om die effek van plaaslike vervaardigde biochar op die vrugbaarheid van die sanderige grond van die Wes-Kaap te ondersoek, en om die optimale biochar toedieningsvlak te bepaal. Verder, het hierdie studie die effek van biochar op die loging van anorganiese stikstof kunsmis en ‘n multi-elementkunsmis op sanderige grond ondersoek. Die biochar wat in hierdie studie gebruik is, is van dennehout saagmeul afval vervaardig d.m.v. stadige pirolise (450 °C). Die grond wat in hierdie studie gebruik is, is ‘n geloogde, suur, sanderige grond van Brackenfell, Wes-Kaap. In die eerste studie, is ‘n chemiesie ondersoek van die sanderige grond wat vermeng met is met vyf verskillende vlakke van biochar (0, 0.05, 0.5 en 10.0 % w/w) uitgevoer. Totale koolstof en stikstof, pH, KUK, en plant-beskikbare voedingstowwe en toksiene is in die grondmengsels bepaal. Die toediening van biochar het ‘n veroorsaak dat die grond pH, uitruilbare basiese katione, fosfor en waterhouvermoë beduidend toegeneem het. ‘n Koringpotproef was uitgevoer vir 12 weke en ook tot volwassenheid (wat op 22 weke bereik was) om die effek van die biochar op die sanderige grond teen die vyf verskillende toedieningsvlakke te bepaal. Daar was behandelings met en sonder die bykomstige toediening van ‘n wateroplosbare breë-spektrumkunsmis. Resultate toon dat die toediening van biochar teen lae vlakke koringbiomassa produksie verbeter. Die optimale biochar toedieningsvlak in die koringpotproef is 0.5 % (omtrent 10 t ha-1 tot ‘n diepte van 15 cm) vir die bemeste behandeling (21 % biomassa toename), en 2.5 % (omtrent 50 t ha-1 na ‘n diepte van 15 cm) vir onbemeste behandelings (29 % biomassa toename). Aangesien die meeste biochars alkalies is en ‘n hoë C:N verhouding besit, moet sorg gedra word wanneer dit op swak-gebufferde of lae N-houdende sanderige gronde toegedien word. Die resultate het aangedui dat die biochar versigtig aangewend moet word om grond oorbekalking te voorkom. In die tweede studie, was kolomme gepak met 2.0 kg van die sanderige grond gemeng met biochar (0, 0.05, 0.5, 2.5 en 10.0 % w/w) om die effek van biochar op die loging die anorganiese stikstof kunsmis oor ‘n tydperk van 6 weke om vas te stel. Daar is gevind dat biochar (0.5, 2.5 en 10.0 % w/w) die loging van ammonium (12, 50 en 86 % onderskeidelik) en nitraat (26, 42 en 95 % onderskeidelik) op sanderige grond aansienliek verminder. Verder, het biochar (0.5 %) die loging van basiese katione, fosfor en mikrovoedingstowwe aansienlik verminder. Hierdie studie het die potensiaal van biochar as verbeteringmiddel van suur, sanderige grond gedemonstreer. Ons bevindinge dui daarop aan dat ‘n toepassing vlak van 10 t ha-1 moet nie oorskry word nie wanneer biochar op hierdie gronde toegedien word. Die toediening van biochar op sanderige grond kan die loging van voedingstowwe aansienlik verlaag.
Hassan, Khalida Abdul-Karim. "The effect of soil conditions on nutrient availability, nutrient uptake and productivity of spring wheat". Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329590.
Texto completo da fonteSchofield, Hannah Kate. "A biogeochemical study of nutrient dynamics in artificial soil". Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3766.
Texto completo da fonteCollins, Shane. "Residue composition influences nutrient release from crop residues". University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0171.
Texto completo da fonteLivros sobre o assunto "Soil nutrient"
Nair, Kodoth Prabhakaran. Thermodynamics of Soil Nutrient Bioavailability. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76817-1.
Texto completo da fonteK, Soon Y., ed. Soil nutrient availability: Chemistry and concepts. New York, N.Y: Van Nostrand Reinhold, 1985.
Encontre o texto completo da fonteG, Paoletti M., Foissner Wilhelm e Coleman David C. 1938-, eds. Soil biota, nutrient cycling, and farming systems. Boca Raton: Lewis Publishers, 1993.
Encontre o texto completo da fonteBarber, Stanley A. Soil nutrient bioavailability: A mechanistic approach. 2a ed. New York: Wiley, 1995.
Encontre o texto completo da fonteKoch, Marguerite S. Soil and surface water nutrients in the Everglades nutrient removal project. West Palm Beach: Environmental Sciences Division, Research and Evaluation Dept., South Florida Water Management District, 1991.
Encontre o texto completo da fonteBallard, T. M. Evaluating forest stand nutrient status. Victoria, B.C: Information Services Branch, Ministry of Forests, 1986.
Encontre o texto completo da fonteJorgensen, Jacques R. Foresters' primer in nutrient cycling. Asheville, N.C: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1986.
Encontre o texto completo da fonteMahler, Robert Louis. Current nutrient status of soils in Idaho, Oregon and Washington. [Corvallis, Or.]: University of Idaho Cooperative Extension Service, Washington State University Cooperative Extension Service, Oregon State University Cooperative Extension Service, and U.S. Dept. of Agriculture, 1985.
Encontre o texto completo da fonteSinha, Madhulika. Biomass and soil nutrient budget in Karnataka. Bangalore, India: Indian Institute of Science, Centre for Ecological Sciences, 1987.
Encontre o texto completo da fonteHavlin, John L., e Jeffrey S. Jacobsen, eds. Soil Testing: Prospects for Improving Nutrient Recommendations. Madison, WI, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc., 1994. http://dx.doi.org/10.2136/sssaspecpub40.
Texto completo da fonteCapítulos de livros sobre o assunto "Soil nutrient"
Wallander, Håkan. "The Nutrient Cycle". In Soil, 79–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08458-9_5.
Texto completo da fonteArbestain, M. Camps, F. Macías, W. Chesworth, Ward Chesworth, Otto Spaargaren, Johnson Semoka e Konrad Mengel. "Nutrient Potentials". In Encyclopedia of Soil Science, 494–500. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_386.
Texto completo da fonteBinkley, Dan, e Peter Vitousek. "Soil nutrient availability". In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9013-1_5.
Texto completo da fonteBinkley, Dan, e Peter Vitousek. "Soil nutrient availability". In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2221-1_5.
Texto completo da fonteReetsch, Anika, Didas Kimaro, Karl-Heinz Feger e Kai Schwärzel. "Traditional and Adapted Composting Practices Applied in Smallholder Banana-Coffee-Based Farming Systems: Case Studies from Kagera and Morogoro Regions, Tanzania". In Organic Waste Composting through Nexus Thinking, 165–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_8.
Texto completo da fonteMurrell, T. Scott. "Measuring Nutrient Removal, Calculating Nutrient Budgets". In Soil Science Step-by-Step Field Analysis, 159–82. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2008.soilsciencestepbystep.c13.
Texto completo da fonteMukherjee, Swapna. "Chemistry of Soil Nutrient". In Current Topics in Soil Science, 165–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92669-4_16.
Texto completo da fonteMajumdar, Kaushik, Robert M. Norton, T. Scott Murrell, Fernando García, Shamie Zingore, Luís Ignácio Prochnow, Mirasol Pampolino et al. "Assessing Potassium Mass Balances in Different Countries and Scales". In Improving Potassium Recommendations for Agricultural Crops, 283–340. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_11.
Texto completo da fonteMitra, Sisir. "Plant nutrition and irrigation." In Guava: botany, production and uses, 148–71. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247022.0007.
Texto completo da fonteFranzen, David. "Crop-Specific Nutrient Management". In Soil Fertility Management in Agroecosystems, 12–43. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2017. http://dx.doi.org/10.2134/soilfertility.2014.0008.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Soil nutrient"
Zu, Di, Xiaodong Yang, Zhongbin Su, Xiaohe Gu e Yancang Wang. "The soil nutrient monitoring system". In u- and e- Service, Science and Technology 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.77.17.
Texto completo da fonteSavescu, Petre. "MITIGATION METHODS OF SOIL NUTRIENT LOSSES". In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b32/s13.026.
Texto completo da fonteMadhumathi, R., T. Arumuganathan, R. Shruthi e R. Sneha Iyer. "Soil Nutrient Analysis using Colorimetry Method". In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277182.
Texto completo da fonteTreese, Daniel P., Shirley E. Clark e Katherine H. Baker. "Nutrient Leaching from Disturbed Soil Horizons". In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)302.
Texto completo da fontePuno, John Carlo V., Rhen Anjerome R. Bedruz, Allysa Kate M. Brillantes, Ryan Rhay P. Vicerra, Argel A. Bandala e Elmer P. Dadios. "Soil Nutrient Detection using Genetic Algorithm". In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ). IEEE, 2019. http://dx.doi.org/10.1109/hnicem48295.2019.9072689.
Texto completo da fontePallevada, Hema, Siva parvathi Potu, Teja Venkata Kumar Munnangi, Bharath Chandhra Rayapudi, Sai Raghava Gadde e Mukesh Chinta. "Real-time Soil Nutrient detection and Analysis". In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021. http://dx.doi.org/10.1109/icacite51222.2021.9404549.
Texto completo da fonteKrishna, N. M. Sai, R. Priyakanth, Mahesh Babu Katta e Radha Abburi. "Soil Nutrient Survey and Google Map Cartography". In 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2020. http://dx.doi.org/10.1109/smart50582.2020.9337135.
Texto completo da fonteVesic, Ana, Vuk Ignjatovic, Sava Lakicevic, Luka Lakicevic, Bojan Gutic, Hristo Skacev, Dusan Dotlic, Andrej Micovic, Marina Marjanovic Jakovljevic e Miodrag Zivkovic. "Predicting Plant Water and Soil Nutrient Requirements". In 2020 Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE, 2020. http://dx.doi.org/10.1109/zinc50678.2020.9161433.
Texto completo da fonteVernekar, Sulaxana R., Ingrid Anne P. Nazareth, Jivan S. Parab e Gourish M. Naik. "RF spectroscopy technique for soil nutrient analysis". In 2015 International Conference on Technologies for Sustainable Development (ICTSD). IEEE, 2015. http://dx.doi.org/10.1109/ictsd.2015.7095878.
Texto completo da fonteAkhil, R., M. S. Gokul, Sruthi Menon e Lekshmi S. Nair. "Automated Soil Nutrient Monitoring for Improved Agriculture". In 2018 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2018. http://dx.doi.org/10.1109/iccsp.2018.8524512.
Texto completo da fonteRelatórios de organizações sobre o assunto "Soil nutrient"
Strand, Allan. Effects of fine-root senescence upon soil communities and nutrient flux into soil pools (Final Report). Office of Scientific and Technical Information (OSTI), janeiro de 2022. http://dx.doi.org/10.2172/1841430.
Texto completo da fonteCusack, Daniela, Benjamin Turner, S. Wright e Lee Dietterich. Consequences of Altered Root Nutrient Uptake for Soil Carbon Stabilization (Final Report). Office of Scientific and Technical Information (OSTI), fevereiro de 2021. http://dx.doi.org/10.2172/1763927.
Texto completo da fonteBusby, Ryan, H. Torbert e Stephen Prior. Soil and vegetation responses to amendment with pulverized classified paper waste. Engineer Research and Development Center (U.S.), maio de 2022. http://dx.doi.org/10.21079/11681/44202.
Texto completo da fonteAbay, Kibrom A., Mehari Hiluf Abay, Mulubrhan Amare, Guush Berhane e Ermias Betemariam. Mismatch between soil nutrient requirements and fertilizer applications: Implications for yield responses in Ethiopia. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134449.
Texto completo da fonteAlvez, Juan, James Cropper, Lynn Knight, Ed Rayburn, Howard Skinner, Kathy Soder e Mike Westendorf. Managing Grazing to Improve Climate Resilience. USDA Northeast Climate Hub, fevereiro de 2017. http://dx.doi.org/10.32747/2017.6956540.ch.
Texto completo da fonteComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report, October-December 1999. Office of Scientific and Technical Information (OSTI), janeiro de 2000. http://dx.doi.org/10.2172/759444.
Texto completo da fonteBjorkman, Thomas, Michel Cavigelli, Dan Dostie, Joshua Faulkner, Lynn Knight, Steven Mirsky e Brandon Smith. Cover Cropping to Improve Climate Resilience. USDA Northeast Climate Hub, fevereiro de 2017. http://dx.doi.org/10.32747/2017.6956539.ch.
Texto completo da fonteComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period January-March 2000. Office of Scientific and Technical Information (OSTI), março de 2000. http://dx.doi.org/10.2172/759332.
Texto completo da fonteComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period July-September 1999. Office of Scientific and Technical Information (OSTI), outubro de 1999. http://dx.doi.org/10.2172/761037.
Texto completo da fonteHaan, Matthew M., James R. Russell, Daniel G. Morrical e Daryl R. Strohbehn. Effects of Grazing Management on Forage Sward Height, Mass, and Nutrient Concentrations and the Proportions of Fecal Cover and Bare Soil in Pastures. Ames (Iowa): Iowa State University, janeiro de 2007. http://dx.doi.org/10.31274/ans_air-180814-133.
Texto completo da fonte