Siga este link para ver outros tipos de publicações sobre o tema: Soil biology.

Artigos de revistas sobre o tema "Soil biology"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Soil biology".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Holt, John. "Soil biology". Geoderma 53, n.º 1-2 (maio de 1992): 173–74. http://dx.doi.org/10.1016/0016-7061(92)90032-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tate, Robert L. "Soil Biology. 1989". Soil Science 150, n.º 5 (novembro de 1990): 828. http://dx.doi.org/10.1097/00010694-199011000-00009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Valentine, Barry D. "Soil Biology Guide". American Entomologist 38, n.º 3 (1992): 181–82. http://dx.doi.org/10.1093/ae/38.3.181a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

New, T. R. "Soil biology guide". Soil Biology and Biochemistry 23, n.º 7 (janeiro de 1991): 707–8. http://dx.doi.org/10.1016/0038-0717(91)90088-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lehman, R. M., V. Acosta-Martinez, J. S. Buyer, C. A. Cambardella, H. P. Collins, T. F. Ducey, J. J. Halvorson et al. "Soil biology for resilient, healthy soil". Journal of Soil and Water Conservation 70, n.º 1 (1 de janeiro de 2015): 12A—18A. http://dx.doi.org/10.2489/jswc.70.1.12a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Coleman, D. C., E. P. Odum e D. A. Crossley. "Soil biology, soil ecology, and global change". Biology and Fertility of Soils 14, n.º 2 (outubro de 1992): 104–11. http://dx.doi.org/10.1007/bf00336258.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Robinson, Clare, F. Schinner, R. Ohlinger, E. Kandeler e R. Margesin. "Methods in Soil Biology." Journal of Ecology 85, n.º 3 (junho de 1997): 404. http://dx.doi.org/10.2307/2960521.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Edwards, Clive A. "Soil Biology. Tertiary Level Biology. Martin Wood". Quarterly Review of Biology 66, n.º 2 (junho de 1991): 224. http://dx.doi.org/10.1086/417204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lussenhop, John. "Soil Biology for Ecological Students". Ecology 71, n.º 6 (dezembro de 1990): 2399. http://dx.doi.org/10.2307/1938658.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Usher, M. B., P. Lebrun, H. M. Andre, A. De Medts, C. Gregoire-Wibo e G. Wauthy. "New Trends in Soil Biology". Journal of Animal Ecology 54, n.º 1 (fevereiro de 1985): 337. http://dx.doi.org/10.2307/4644.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Lynch, J. M. "Soil Biology: Accomplishments and Potential". Soil Science Society of America Journal 51, n.º 6 (novembro de 1987): 1409–12. http://dx.doi.org/10.2136/sssaj1987.03615995005100060004x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Mitchell, Myron J. "Soil Biology Guide.Daniel L. Dindal". Quarterly Review of Biology 66, n.º 1 (março de 1991): 101–2. http://dx.doi.org/10.1086/417109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Anderson, J. M., e J. S. I. Ingram. "Tropical Soil Biology and Fertility". Soil Science 157, n.º 4 (abril de 1994): 265. http://dx.doi.org/10.1097/00010694-199404000-00012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ohtonen, R., S. Aikio e H. Väre. "Ecological theories in soil biology". Soil Biology and Biochemistry 29, n.º 11-12 (novembro de 1997): 1613–19. http://dx.doi.org/10.1016/s0038-0717(97)00063-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Geisen, Stefan, Edward A. D. Mitchell, Sina Adl, Michael Bonkowski, Micah Dunthorn, Flemming Ekelund, Leonardo D. Fernández et al. "Soil protists: a fertile frontier in soil biology research". FEMS Microbiology Reviews 42, n.º 3 (13 de fevereiro de 2018): 293–323. http://dx.doi.org/10.1093/femsre/fuy006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Mantoni, Cristina, Marika Pellegrini, Leonardo Dapporto, Maria Del Gallo, Loretta Pace, Donato Silveri e Simone Fattorini. "Comparison of Soil Biology Quality in Organically and Conventionally Managed Agro-Ecosystems Using Microarthropods". Agriculture 11, n.º 10 (19 de outubro de 2021): 1022. http://dx.doi.org/10.3390/agriculture11101022.

Texto completo da fonte
Resumo:
Since management practices profoundly influence soil characteristics, the adoption of sustainable agro-ecological practices is essential for soil health conservation. We compared soil health in organic and conventional fields in the Abruzzi region (central Italy) by using (1) the soil biology quality (QBS) index (which expresses the level of specialisation in soil environment shown by microarthropods) and (2) microarthropod diversity expressed by Hill numbers. QBS values were calculated using both the original formulation based on only presence/absence data and a new abundance-based version. We found that organic management improves soil biology quality, which encourages the use of organic farming to maintain soil health. Including arthropod abundance in QBS calculation does not change the main outcomes, which supports the use of its original, speedier formulation. We also found that agricultural fields included in protected areas had greater soil health, which shows the importance of the matrix in determining agricultural soil health and highlights the importance of land protection in preserving biodiversity even in managed soils. Finally, we found that soil biology quality and microarthropod community structure are distinctly influenced by certain physical and chemical characteristics of the soil, which supports the use of microarthropods as biological indicators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

POP, Bianca, Roxana VIDICAN e Camelia MUNTEANU. "The Effects of Heavy Metals on Soil Biology". Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 80, n.º 1 (15 de maio de 2023): 8–16. http://dx.doi.org/10.15835/buasvmcn-agr:2022.0019.

Texto completo da fonte
Resumo:
Heavy metal pollution is a global environmental issue threatening food security and the environment. It is caused by the rapid growth of agriculture and industry. The development of new industries and the increasing number of people have also contributed to the rise in these conditions. Heavy metals that contaminate soils are mercury (Hg), cadmium (Cd), lead (Pb), and chromium (Cr), these toxic substances are retained by the soil and act as a filter for their properties. The aim of this paper was to review the impact of heavy metals on soil, as well as the methods to combat their toxicity in agricultural ones. In order to achieve this goal, data belonging to national and international databases were used (Science Direct, NCBI). The finding of different strategies to combat pollution, particularly on the soil represented the goals for the majority of the studies. As such, bioremediation is a promising choice to reduce heavy metal concentrations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Coyne, M. S., E. M. Pena-Yewtukhiw, J. H. Grove, A. C. Sant'Anna e D. Mata-Padrino. "Soil health – It's not all biology". Soil Security 6 (março de 2022): 100051. http://dx.doi.org/10.1016/j.soisec.2022.100051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Burns, R. "Soil Biology & Biochemistry Citation Classics". Soil Biology and Biochemistry 36, n.º 1 (janeiro de 2004): 3. http://dx.doi.org/10.1016/j.soilbio.2003.10.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Briggs, Winslow R. "Plant Biology: Seedling Emergence through Soil". Current Biology 26, n.º 2 (janeiro de 2016): R68—R70. http://dx.doi.org/10.1016/j.cub.2015.12.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Rao, D. L. N. "Experiments in soil biology and biochemistry". Indian Journal of Microbiology 47, n.º 2 (junho de 2007): 184. http://dx.doi.org/10.1007/s12088-007-0037-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

O’DONOVAN, J. T., e M. P. SHARMA. "THE BIOLOGY OF CANADIAN WEEDS.: 78. Galeopsis tetrahit L." Canadian Journal of Plant Science 67, n.º 3 (1 de julho de 1987): 787–96. http://dx.doi.org/10.4141/cjps87-106.

Texto completo da fonte
Resumo:
Galeopsis tetrahit is an annual weed which was introduced to North America from Eurasia. It is present in all Canadian provinces and occupies a wide range of habitats including cultivated fields. It favors well-watered nutrient-rich soils and occurs infrequently in the drier brown soil zones of the southern Canadian prairies. Low soil moisture may be a major factor limiting its distribution and spread. It can reduce crop yields, contaminate crop seed and act as a reservoir for disease-causing organisms. A number of herbicides are available for its control.Key words: Hemp-nettle, Galeopsis tetrahit L., weed ecology, weed biology
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Forge, T., G. Neilsen, D. Neilsen, D. O'Gorman, E. Hogue e D. Angers. "ORGANIC ORCHARD SOIL MANAGEMENT PRACTICES AFFECT SOIL BIOLOGY AND ORGANIC MATTER". Acta Horticulturae, n.º 1076 (março de 2015): 77–84. http://dx.doi.org/10.17660/actahortic.2015.1076.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Bölter, Manfred. "Soil development and soil biology on King George Island, Maritime Antarctic". Polish Polar Research 32, n.º 2 (1 de janeiro de 2011): 105–16. http://dx.doi.org/10.2478/v10183-011-0002-z.

Texto completo da fonte
Resumo:
Soil development and soil biology on King George Island, Maritime AntarcticThis review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorganisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further, only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wong, J. W. C., K. M. Lai, M. Fang e K. K. Ma. "Soil Biology of Low Grade Landfill Soil with Sewage Sludge Amendment". Environmental Technology 21, n.º 11 (novembro de 2000): 1233–38. http://dx.doi.org/10.1080/09593332108618149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hüberli, Daniel. "Soil health, soil biology, soilborne diseases and sustainable agriculture: A guide". Australasian Plant Pathology 46, n.º 4 (19 de maio de 2017): 387. http://dx.doi.org/10.1007/s13313-017-0493-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Vilkova, Valeria, Kamil Kazeev, Aslan Shkhapatsev, Mikhail Nizhelsky e Sergey Kolesnikov. "Pyrogenic impact on biology activity of chernozem in model experiments". АгроЭкоИнфо 5, n.º 47 (24 de outubro de 2021): 20. http://dx.doi.org/10.51419/20215520.

Texto completo da fonte
Resumo:
The influence of the pyrogenic effect on the biological properties of Haplic chernozem was investigated. For this, a series of model experiments was set up to simulate fires of various duration and intensity. A significant change in the biological properties of soils was found, as well as differences in the reactions of biological indicators to the pyrogenic effect. In different experiments, a different nature of changes in the reaction of the soil environment and the content of organic carbon, an increase in the content of readily soluble salts, was established. In all experiments, inhibition of catalase activity was noted, changes in peroxidase activity were more contradictory. In one of the experiments, stimulation of peroxidase activity was found. In order to study the methods of restoring the biological activity of post-pyrogenic soils, a model experiment was carried out using potassium humate, complex mineral fertilizer and phytoremediation. At the same time, no unambiguous results were obtained that would make it possible to recommend methods for the accelerated recovery of post-pyrogenic soils. Keywords: BIODIAGNOSTICS, FIRES, POSTPYROGENIC SOILS, ENZYME ACTIVITY, SOIL RESTORATION
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bhunia, Shantanu, Ankita Bhowmik, Rambilash Mallick e Joydeep Mukherjee. "Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review". Agronomy 11, n.º 5 (22 de abril de 2021): 823. http://dx.doi.org/10.3390/agronomy11050823.

Texto completo da fonte
Resumo:
Healthy soils are essential for progressive agronomic activities. Organic fertilization positively affects agro-ecosystems by stimulating plant growth, enhancing crop productivity and fruit quality and improving soil fertility. Soil health and food security are the key elements of Organic Agriculture 3.0. Landfilling and/or open-dumping of animal wastes produced from slaughtering cause environmental pollution by releasing toxic substances, leachate and greenhouse gases. Direct application of animal carcasses to agricultural fields can adversely affect soil microbiota. Effective waste management technologies such as thermal drying, composting, vermicomposting and anaerobic digestion transform animal wastes, making them suitable for soil application by supplying soil high in organic carbon and total nitrogen. Recent agronomic practices applied recycled animal wastes as organic fertilizer in crop production. However, plants may not survive at a high fertilization rate due to the presence of labile carbon fraction in animal wastes. Therefore, dose calculation and determination of fertilizer application frequency are crucial for agronomists. Long-term animal waste-derived organic supplementation promotes copiotrophic microbial abundance due to enhanced substrate affinity, provides micronutrients to soils and protects crops from soil-borne pathogens owing to formation of plant-beneficial microbial consortia. Animal waste-derived organically fertilized soils possess higher urease and acid phosphatase activities. Furthermore, waste to fertilizer conversion is a low-energy requiring process that promotes circular bio-economy. Thus, considering the promotion of soil fertility, microbial abundance, disease protection and economic considerations application of animal-waste-derived organic fertilizer should be the mainstay for sustainable agriculture.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Blagodatsky, Sergey, e Pete Smith. "Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil". Soil Biology and Biochemistry 47 (abril de 2012): 78–92. http://dx.doi.org/10.1016/j.soilbio.2011.12.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Wyatt, Briana, e Susan Chapman. "Soil Biology, Chemistry, and Physics … Oh My!" CSA News 66, n.º 6 (30 de maio de 2021): 44. http://dx.doi.org/10.1002/csan.20485.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Uroz, S., A. Bispo, M. Buee, A. Cebron, J. Cortet, T. Decaens, M. Hedde, G. Peres, M. Vennetier e C. Villenave. "Highlights on progress in forest soil biology". Revue Forestière Française, SP (2014): Fr.], ISSN 0035. http://dx.doi.org/10.4267/2042/56266.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Creamer, R. E. "The Biology of Soil - by R.D. Bardgett". European Journal of Soil Science 58, n.º 5 (outubro de 2007): 1214. http://dx.doi.org/10.1111/j.1365-2389.2007.00943_2.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Andrén, O., H. Kirchmann, T. Kätterer, J. Magid, E. A. Paul e D. C. Coleman. "Visions of a more precise soil biology". European Journal of Soil Science 59, n.º 2 (abril de 2008): 380–90. http://dx.doi.org/10.1111/j.1365-2389.2008.01018.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

BURNS, R. "Soil Biology & Biochemistry Citation Classic IV". Soil Biology and Biochemistry 38, n.º 9 (setembro de 2006): 2509. http://dx.doi.org/10.1016/j.soilbio.2006.03.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VI". Soil Biology and Biochemistry 41, n.º 10 (outubro de 2009): 2029–30. http://dx.doi.org/10.1016/j.soilbio.2009.07.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VII". Soil Biology and Biochemistry 42, n.º 9 (setembro de 2010): 1361–62. http://dx.doi.org/10.1016/j.soilbio.2010.05.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic VIII". Soil Biology and Biochemistry 42, n.º 12 (dezembro de 2010): 2037–38. http://dx.doi.org/10.1016/j.soilbio.2010.08.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic IX". Soil Biology and Biochemistry 43, n.º 5 (maio de 2011): 871–72. http://dx.doi.org/10.1016/j.soilbio.2011.01.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic X". Soil Biology and Biochemistry 43, n.º 8 (agosto de 2011): 1619–20. http://dx.doi.org/10.1016/j.soilbio.2011.03.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XI". Soil Biology and Biochemistry 64 (setembro de 2013): 200–202. http://dx.doi.org/10.1016/j.soilbio.2012.09.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XII". Soil Biology and Biochemistry 68 (janeiro de 2014): A1—A3. http://dx.doi.org/10.1016/j.soilbio.2013.09.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Szegi, J. "Soil Biology and Conservation of the Biosphere". Soil Science 141, n.º 3 (março de 1986): 245. http://dx.doi.org/10.1097/00010694-198603000-00012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XIII". Soil Biology and Biochemistry 80 (janeiro de 2015): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2014.10.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XIV". Soil Biology and Biochemistry 105 (fevereiro de 2017): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2016.08.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XV". Soil Biology and Biochemistry 121 (junho de 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.01.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XVI". Soil Biology and Biochemistry 123 (agosto de 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.03.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Burns, Richard G. "Soil Biology & Biochemistry Citation Classic XVII". Soil Biology and Biochemistry 147 (agosto de 2020): 107818. http://dx.doi.org/10.1016/j.soilbio.2020.107818.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Burns, Richard G. "Soil Biology & Biochemistry Citation Classics II". Soil Biology and Biochemistry 36, n.º 9 (setembro de 2004): 1367. http://dx.doi.org/10.1016/j.soilbio.2004.06.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Burns, Richard G. "Soil Biology & Biochemistry Citation Classics III". Soil Biology and Biochemistry 37, n.º 5 (maio de 2005): 809. http://dx.doi.org/10.1016/j.soilbio.2004.12.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Murphy, Daniel V., John A. Kirkegaard e Pauline M. Mele. "Preface: Soil biology in Australian farming systems". Soil Research 44, n.º 4 (2006): I. http://dx.doi.org/10.1071/srv44n4_pr.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia