Siga este link para ver outros tipos de publicações sobre o tema: Smoothed particle hydrodynamics.

Artigos de revistas sobre o tema "Smoothed particle hydrodynamics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Smoothed particle hydrodynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Monaghan, J. J. "Smoothed Particle Hydrodynamics". Annual Review of Astronomy and Astrophysics 30, n.º 1 (setembro de 1992): 543–74. http://dx.doi.org/10.1146/annurev.aa.30.090192.002551.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Monaghan, J. J. "Smoothed particle hydrodynamics". Reports on Progress in Physics 68, n.º 8 (5 de julho de 2005): 1703–59. http://dx.doi.org/10.1088/0034-4885/68/8/r01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ritchie, B. W., e P. A. Thomas. "Multiphase smoothed-particle hydrodynamics". Monthly Notices of the Royal Astronomical Society 323, n.º 3 (21 de maio de 2001): 743–56. http://dx.doi.org/10.1046/j.1365-8711.2001.04268.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cullen, Lee, e Walter Dehnen. "Inviscid smoothed particle hydrodynamics". Monthly Notices of the Royal Astronomical Society 408, n.º 2 (30 de julho de 2010): 669–83. http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tsuji, P., M. Puso, C. W. Spangler, J. M. Owen, D. Goto e T. Orzechowski. "Embedded smoothed particle hydrodynamics". Computer Methods in Applied Mechanics and Engineering 366 (julho de 2020): 113003. http://dx.doi.org/10.1016/j.cma.2020.113003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ellero, Marco, Mar Serrano e Pep Español. "Incompressible smoothed particle hydrodynamics". Journal of Computational Physics 226, n.º 2 (outubro de 2007): 1731–52. http://dx.doi.org/10.1016/j.jcp.2007.06.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Petschek, A. G., e L. D. Libersky. "Cylindrical Smoothed Particle Hydrodynamics". Journal of Computational Physics 109, n.º 1 (novembro de 1993): 76–83. http://dx.doi.org/10.1006/jcph.1993.1200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tavakkol, Sasan, Amir Reza Zarrati e Mahdiyar Khanpour. "Curvilinear smoothed particle hydrodynamics". International Journal for Numerical Methods in Fluids 83, n.º 2 (7 de junho de 2016): 115–31. http://dx.doi.org/10.1002/fld.4261.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Trimulyono, Andi. "Validasi Gerakan Benda Terapung Menggunakan Metode Smoothed Particle Hydrodynamics". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 15, n.º 2 (6 de junho de 2018): 38–43. http://dx.doi.org/10.14710/kpl.v15i2.17802.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Murante, G., S. Borgani, R. Brunino e S. H. Cha. "Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics". Monthly Notices of the Royal Astronomical Society 417, n.º 1 (13 de setembro de 2011): 136–53. http://dx.doi.org/10.1111/j.1365-2966.2011.19021.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Yamamoto, Satoko, Takayuki R. Saitoh e Junichiro Makino. "Smoothed particle hydrodynamics with smoothed pseudo-density". Publications of the Astronomical Society of Japan 67, n.º 3 (3 de abril de 2015): 37. http://dx.doi.org/10.1093/pasj/psv006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Trimulyono, Andi, e Ardhana Wicaksono. "Simulasi numerik large-deformation surface wave dengan smoothed particle hydrodynamics". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 15, n.º 3 (14 de fevereiro de 2019): 102–6. http://dx.doi.org/10.14710/kapal.v15i3.21535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liptai, David, e Daniel J. Price. "General relativistic smoothed particle hydrodynamics". Monthly Notices of the Royal Astronomical Society 485, n.º 1 (17 de janeiro de 2019): 819–42. http://dx.doi.org/10.1093/mnras/stz111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Springel, Volker. "Smoothed Particle Hydrodynamics in Astrophysics". Annual Review of Astronomy and Astrophysics 48, n.º 1 (agosto de 2010): 391–430. http://dx.doi.org/10.1146/annurev-astro-081309-130914.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Monaghan, Joseph J., Herbert E. Huppert e M. Grae Worster. "Solidification using smoothed particle hydrodynamics". Journal of Computational Physics 206, n.º 2 (julho de 2005): 684–705. http://dx.doi.org/10.1016/j.jcp.2004.11.039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ayal, S., T. Piran, R. Oechslin, M. B. Davies e S. Rosswog. "Post‐Newtonian Smoothed Particle Hydrodynamics". Astrophysical Journal 550, n.º 2 (abril de 2001): 846–59. http://dx.doi.org/10.1086/319769.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Wong, S., e Y. Shie. "Galerkin based smoothed particle hydrodynamics". Computers & Structures 87, n.º 17-18 (setembro de 2009): 1111–18. http://dx.doi.org/10.1016/j.compstruc.2009.04.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Price, Daniel J. "Smoothed particle hydrodynamics and magnetohydrodynamics". Journal of Computational Physics 231, n.º 3 (fevereiro de 2012): 759–94. http://dx.doi.org/10.1016/j.jcp.2010.12.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Swegle, J. W., D. L. Hicks e S. W. Attaway. "Smoothed Particle Hydrodynamics Stability Analysis". Journal of Computational Physics 116, n.º 1 (janeiro de 1995): 123–34. http://dx.doi.org/10.1006/jcph.1995.1010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Liu, M. B., e G. R. Liu. "Restoring particle consistency in smoothed particle hydrodynamics". Applied Numerical Mathematics 56, n.º 1 (janeiro de 2006): 19–36. http://dx.doi.org/10.1016/j.apnum.2005.02.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Lastiwka, Martin, Nathan Quinlan e Mihai Basa. "Adaptive particle distribution for smoothed particle hydrodynamics". International Journal for Numerical Methods in Fluids 47, n.º 10-11 (2005): 1403–9. http://dx.doi.org/10.1002/fld.891.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Wang, Jingsi, Shaolin Xu, Keita Shimada, Masayoshi Mizutani e Tsunemoto Kuriyagawa. "Smoothed particle hydrodynamics simulation and experimental study of ultrasonic machining". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, n.º 11 (20 de fevereiro de 2017): 1875–84. http://dx.doi.org/10.1177/0954405417692005.

Texto completo da fonte
Resumo:
Hard and brittle materials like glass and ceramics are highly demanded in modern manufacturing industries. However, their superior physical and mechanical properties lead to high cost of machining. Ultrasonic machining has been regarded as one of the most suitable fabrication techniques for these kinds of materials. A smoothed particle hydrodynamics model was proposed to study the material removal mechanism of the ultrasonic machining in this study. Influences of abrasive materials and the particle shapes on the crack formation of work substrates were investigated using this smoothed particle hydrodynamics model. Experiments were also conducted to verify the simulation model. Both of the simulation and experimental results show that using hard and spherical abrasive particles is helpful to improve the material removal efficiency. This work was the first to demonstrate the crack formation mechanisms during ultrasonic machining with different abrasive particles using smoothed particle hydrodynamics, which is significant for improving the machining performance of the ultrasonic machining process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hedayati, Ehsan, e Mohammad Vahedi. "Evaluating Impact Resistance of Aluminum 6061-T651 Plate using Smoothed Particle Hydrodynamics Method". Defence Science Journal 68, n.º 3 (16 de abril de 2018): 251. http://dx.doi.org/10.14429/dsj.68.11635.

Texto completo da fonte
Resumo:
Performing various experimental, theoretical, and numerical investigations for better understanding of behavioural characteristics of metals under impact loading is of primary importance. In this paper, application of smoothed particle hydrodynamics (SPH) method in impact mechanics is discussed and effective parameters on impact strength of an aluminum plate are investigated. To evaluate the accuracy of smoothed particle hydrodynamics method for simulating impact, Recht and Ipson model is first provided thoroughly for both Rosenberg analytical model and smoothed particle hydrodynamics method, and then plots of initial velocity-residual velocity and initial velocity-absorbed energy for target of aluminum 6061-T651 are presented. The derived information and simulation results expresses that the maximum error percentage of smoothed particle hydrodynamics method in compared with Rosenberg analytical model is within an acceptable range. Therefore, the results of smoothed particle hydrodynamics method verify the Rosenberg analytical model with high accuracy. Results reveal that higher initial impact velocity decreases the time of projectile penetration, and so penetration depth and length as well as the local damage rate of plate increases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

LIU, M. B., G. R. LIU e Z. ZONG. "AN OVERVIEW ON SMOOTHED PARTICLE HYDRODYNAMICS". International Journal of Computational Methods 05, n.º 01 (março de 2008): 135–88. http://dx.doi.org/10.1142/s021987620800142x.

Texto completo da fonte
Resumo:
This paper presents an overview on smoothed particle hydrodynamics (SPH), which is a meshfree, particle method of Lagrangian nature. In theory, the interpolation and approximations of the SPH method and the corresponding numerical errors are analyzed. The inherent particle inconsistency has been discussed in detail. It has been demonstrated that the particle inconsistency originates from the discrete particle approximation process and is the fundamental cause for poor approximation accuracy. Some particle consistency restoring approaches have been reviewed. In application, SPH modeling of general fluid dynamics and hyperdynamics with material strength have been reviewed with emphases on (1) microfluidics and microdrop dynamics, (2) coast hydrodynamics and offshore engineering, (3) environmental and geophysical flows, (4) high-explosive detonation and explosions, (5) underwater explosions, and (6) hydrodynamics with material strength including hypervelocity impact and penetration.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Daropoulos, Viktor, Matthias Augustin e Joachim Weickert. "Sparse Inpainting with Smoothed Particle Hydrodynamics". SIAM Journal on Imaging Sciences 14, n.º 4 (janeiro de 2021): 1669–705. http://dx.doi.org/10.1137/20m1382179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Wissing, Robert, Sijing Shen, James Wadsley e Thomas Quinn. "Magnetorotational instability with smoothed particle hydrodynamics". Astronomy & Astrophysics 659 (março de 2022): A91. http://dx.doi.org/10.1051/0004-6361/202141206.

Texto completo da fonte
Resumo:
The magnetorotational instability (MRI) is an important process in driving turbulence in sufficiently ionized accretion disks. It has been extensively studied using simulations with Eulerian grid codes, but remains fairly unexplored for meshless codes. Here, we present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method with the geometric density average force expression. We performed 37 shearing box simulations with different initial setups and a wide range of resolution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully with smoothed-particle hydrodynamics (SPH), with results consistent with prior work with grid-based codes, including saturation properties such as magnetic and kinetic energies and their respective stresses. In particular, for the stratified boxes, our simulations reproduce the characteristic “butterfly” diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary, traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from a recent study with meshless methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number (Pm) in SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than ∼2.5, similar to the critical values for the physical Prandtl number found in grid-code simulations. However, unlike grid-based codes, the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients indicate no α-effect in the unstratified cases, but an active αω dynamo and a diamagnetic pumping effect in the stratified medium, which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation, which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Quinlan, Nathan J., e Mingming Tong. "Industrial Applications of Smoothed Particle Hydrodynamics". International Journal of Computational Fluid Dynamics 35, n.º 1-2 (7 de fevereiro de 2021): 1–2. http://dx.doi.org/10.1080/10618562.2021.1946946.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wang, Mengdi, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong e Bo Zhu. "Thin-film smoothed particle hydrodynamics fluid". ACM Transactions on Graphics 40, n.º 4 (agosto de 2021): 1–16. http://dx.doi.org/10.1145/3476576.3476675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wang, Mengdi, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong e Bo Zhu. "Thin-film smoothed particle hydrodynamics fluid". ACM Transactions on Graphics 40, n.º 4 (agosto de 2021): 1–16. http://dx.doi.org/10.1145/3450626.3459864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kodama, T., C. E. Aguiar, T. Osada e Y. Hama. "Entropy-based relativistic smoothed particle hydrodynamics". Journal of Physics G: Nuclear and Particle Physics 27, n.º 3 (20 de fevereiro de 2001): 557–60. http://dx.doi.org/10.1088/0954-3899/27/3/336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Krištof, P., B. Beneš, J. Křivánek e O. Št'ava. "Hydraulic Erosion Using Smoothed Particle Hydrodynamics". Computer Graphics Forum 28, n.º 2 (abril de 2009): 219–28. http://dx.doi.org/10.1111/j.1467-8659.2009.01361.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Oxley, S., e M. M. Woolfson. "Smoothed particle hydrodynamics with radiation transfer". Monthly Notices of the Royal Astronomical Society 343, n.º 3 (11 de agosto de 2003): 900–912. http://dx.doi.org/10.1046/j.1365-8711.2003.06751.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kessel-Deynet, O., e A. Burkert. "Ionizing radiation in smoothed particle hydrodynamics". Monthly Notices of the Royal Astronomical Society 315, n.º 4 (11 de julho de 2000): 713–21. http://dx.doi.org/10.1046/j.1365-8711.2000.03451.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Oger, L., e S. B. Savage. "Smoothed particle hydrodynamics for cohesive grains". Computer Methods in Applied Mechanics and Engineering 180, n.º 1-2 (novembro de 1999): 169–83. http://dx.doi.org/10.1016/s0045-7825(99)00054-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Imaeda, Yusuke, e Shu‐ichiro Inutsuka. "Shear Flows in Smoothed Particle Hydrodynamics". Astrophysical Journal 569, n.º 1 (abril de 2002): 501–18. http://dx.doi.org/10.1086/339320.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Abadi, Mario G., Diego G. Lambas e Patricia B. Tissera. "Cosmological Simulations with Smoothed Particle Hydrodynamics". Symposium - International Astronomical Union 168 (1996): 577–78. http://dx.doi.org/10.1017/s0074180900110757.

Texto completo da fonte
Resumo:
We have developed and tested a code that computes the evolution of a mixed system of gas and dark matter in expanding world models. The gravitational forces are calculated with the Adaptative P3M algorithms developed by H. Couchmann, 1993. The calculation of gas forces follow the standard SPH formalism (Monaghan, 1989).
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Fulk, David A., e Dennis W. Quinn. "Hybrid Formulations of smoothed particle hydrodynamics". International Journal of Impact Engineering 17, n.º 1-3 (janeiro de 1995): 329–40. http://dx.doi.org/10.1016/0734-743x(95)99859-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Zhou, Dai, Si Chen, Lei Li, Huafeng Li e Yaojun Zhao. "Accuracy Improvement of Smoothed Particle Hydrodynamics". Engineering Applications of Computational Fluid Mechanics 2, n.º 2 (janeiro de 2008): 244–51. http://dx.doi.org/10.1080/19942060.2008.11015225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Owen, J. Michael, Jens V. Villumsen, Paul R. Shapiro e Hugo Martel. "Adaptive Smoothed Particle Hydrodynamics: Methodology. II." Astrophysical Journal Supplement Series 116, n.º 2 (junho de 1998): 155–209. http://dx.doi.org/10.1086/313100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

OBARA, Haruki, Mariko HONDA e Akinori KOYAMA. "Fundamental Study of Smoothed Particle Hydrodynamics". Journal of Computational Science and Technology 2, n.º 1 (2008): 101–10. http://dx.doi.org/10.1299/jcst.2.101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

OBARA, Haruki, Jhun SUEMURA e Mariko HONDA. "Fundamental Study of Smoothed Particle Hydrodynamics". Journal of Computational Science and Technology 2, n.º 1 (2008): 92–100. http://dx.doi.org/10.1299/jcst.2.92.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Zhu, Qirong, Lars Hernquist e Yuexing Li. "NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS". Astrophysical Journal 800, n.º 1 (2 de fevereiro de 2015): 6. http://dx.doi.org/10.1088/0004-637x/800/1/6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rosswog, Stephan. "Conservative, special-relativistic smoothed particle hydrodynamics". Journal of Computational Physics 229, n.º 22 (novembro de 2010): 8591–612. http://dx.doi.org/10.1016/j.jcp.2010.08.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Liu, M. B., G. R. Liu e Shaofan Li. "?Smoothed particle hydrodynamics ? a meshfree method?" Computational Mechanics 33, n.º 6 (1 de maio de 2004): 491. http://dx.doi.org/10.1007/s00466-004-0573-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Cleary, Paul W., e Joseph J. Monaghan. "Conduction Modelling Using Smoothed Particle Hydrodynamics". Journal of Computational Physics 148, n.º 1 (janeiro de 1999): 227–64. http://dx.doi.org/10.1006/jcph.1998.6118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Domínguez, J. M., A. J. C. Crespo, M. Gómez-Gesteira e J. C. Marongiu. "Neighbour lists in smoothed particle hydrodynamics". International Journal for Numerical Methods in Fluids 67, n.º 12 (29 de novembro de 2010): 2026–42. http://dx.doi.org/10.1002/fld.2481.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sun, Wei-Kang, Lu-Wen Zhang e K. M. Liew. "Adaptive particle refinement strategies in smoothed particle hydrodynamics". Computer Methods in Applied Mechanics and Engineering 389 (fevereiro de 2022): 114276. http://dx.doi.org/10.1016/j.cma.2021.114276.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

WANG, Jingsi, Keita SHIMADA, Masayoshi MIZUTANI e Tsunemoto KURIYAGAWA. "B014 Influence of Process Parameters on Ultrasonic Machining using Smoothed Particle Hydrodynamics". Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2013.7 (2013): 214–19. http://dx.doi.org/10.1299/jsmelem.2013.7.214.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Su, Chong, Li Da Zhu e Wan Shan Wang. "Simulation Research on Cutting Process of Single Abrasive Grain". Advanced Materials Research 239-242 (maio de 2011): 3123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.3123.

Texto completo da fonte
Resumo:
Cutting processes of single abrasive grain were simulated respectively by fluid-solid interaction method and Smoothed Particle Hydrodynamics method. Advantages and disadvantages of the two methods were compared. Smoothed Particle Hydrodynamics method is superior to fluid-solid interaction method in simulating the deformation behavior of workpiece material for the motion of SPH particles. According to the simulation results, it is concluded that workpiece material occurs plastic deformation, flows to the side and front owing to the extrusion of abrasive grain, and finally forms chip in front of abrasive grain.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Tao, Kaidong, Xueqian Zhou e Huilong Ren. "A Local Semi-Fixed Ghost Particles Boundary Method for WCSPH". Journal of Marine Science and Engineering 9, n.º 4 (13 de abril de 2021): 416. http://dx.doi.org/10.3390/jmse9040416.

Texto completo da fonte
Resumo:
Due to the convenience and flexibility in modeling complex geometries and deformable objects, local ghost particles methods are becoming more and more popular. In the present study, a novel local semi-fixed ghost particles method is proposed for weakly compressible smoothed particle hydrodynamics (WCSPH). In comparison with the previous local ghost particles methods, the new boundary method can effectively reduce spurious pressure oscillations and smooth the flow field. Besides, the new generation mechanism of fictitious particles is simple and robust, which is suitable for all kinds of kernel functions with different sizes of the support domain. The numerical accuracy and stability of the new smoothed particle hydrodynamics (SPH) scheme are validated for several typical benchmark cases. A detailed investigation into the pressure on solid walls and the surface elevation in dynamic simulations is also conducted. A comparison of numerical results shows that the new boundary method helps reduce the oscillations in the numerical solutions and improves the numerical accuracy of the pressure field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia