Siga este link para ver outros tipos de publicações sobre o tema: Smash products.

Artigos de revistas sobre o tema "Smash products"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Smash products".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Wu, Zhi Xiang. "Generalized Smash Products." Acta Mathematica Sinica, English Series 20, no. 1 (2004): 125–34. http://dx.doi.org/10.1007/s10114-003-0293-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chin, William. "Spectra of smash products." Israel Journal of Mathematics 72, no. 1-2 (1990): 84–98. http://dx.doi.org/10.1007/bf02764612.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Fang, Xiao-Li, and Blas Torrecillas. "Twisted Smash Products and L-R Smash Products for Biquasimodule Hopf Quasigroups." Communications in Algebra 42, no. 10 (2014): 4204–34. http://dx.doi.org/10.1080/00927872.2013.806520.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wang, Wei, Nan Zhou, and Shuanhong Wang. "Semidirect products of weak multiplier Hopf algebras: Smash products and smash coproducts." Communications in Algebra 46, no. 8 (2018): 3241–61. http://dx.doi.org/10.1080/00927872.2017.1407421.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

LYDAKIS, MANOS. "Smash products and Γ-spaces". Mathematical Proceedings of the Cambridge Philosophical Society 126, № 2 (1999): 311–28. http://dx.doi.org/10.1017/s0305004198003260.

Texto completo da fonte
Resumo:
In this paper we construct a symmetric monoidal smash product of Γ-spaces modelling the smash product of connective spectra. For the corresponding theory of ring-spectra, we refer the reader to [Sch].
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Guo, Shuangjian, Xiaohui Zhang, Yuanyuan Ke, and Yizheng Li. "Enveloping actions and duality theorems for partial twisted smash products." Filomat 34, no. 10 (2020): 3217–27. http://dx.doi.org/10.2298/fil2010217g.

Texto completo da fonte
Resumo:
In this paper, we first generalize the theorem about the existence of an enveloping action to a partial twisted smash product. Then we construct a Morita context between the partial twisted smash product and the twisted smash product related to the enveloping action. Finally, we present versions of the duality theorems of Blattner-Montgomery for partial twisted smash products.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Chuang, Chen-Lian, and Yuan-Tsung Tsai. "Smash products and differential identities." Transactions of the American Mathematical Society 364, no. 8 (2012): 4155–68. http://dx.doi.org/10.1090/s0002-9947-2012-05454-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ribeiro Alvares, Edson, Marcelo Muniz Alves, and María Julia Redondo. "Cohomology of partial smash products." Journal of Algebra 482 (July 2017): 204–23. http://dx.doi.org/10.1016/j.jalgebra.2017.03.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bergen, Jeffrey, and S. Montgomery. "Smash products and outer derivations." Israel Journal of Mathematics 53, no. 3 (1986): 321–45. http://dx.doi.org/10.1007/bf02786565.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Siciliano, Salvatore, and Hamid Usefi. "Lie structure of smash products." Israel Journal of Mathematics 217, no. 1 (2017): 93–110. http://dx.doi.org/10.1007/s11856-017-1439-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Liu, Wei, Xiaoli Fang, and Blas Torrecillas. "Twisted BiHom-smash products and L-R BiHom-smash products for monoidal BiHom-Hopf algebras." Colloquium Mathematicum 159, no. 2 (2020): 171–93. http://dx.doi.org/10.4064/cm7695-12-2018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Osterburg, James. "Smash Products and G-Galois Actions." Proceedings of the American Mathematical Society 98, no. 2 (1986): 217. http://dx.doi.org/10.2307/2045687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Alonso Alvarez, J. N., J. M. Fernández Vilaboa, and R. González Rodríguez. "Smash (co)Products and skew pairings." Publicacions Matemàtiques 45 (July 1, 2001): 467–75. http://dx.doi.org/10.5565/publmat_45201_09.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Bergen, Jeffrey, and Piotr Grzeszczuk. "SMASH PRODUCTS SATISFYING A POLYNOMIAL IDENTITY." Communications in Algebra 33, no. 1 (2005): 221–33. http://dx.doi.org/10.1081/agb-200040986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wang, Caihong, and Shenglin Zhu. "Smash Products ofH-Simple Module Algebras." Communications in Algebra 41, no. 5 (2013): 1836–45. http://dx.doi.org/10.1080/00927872.2011.651761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Brzeziński, Tomasz, and Zhengming Jiao. "R-smash products of Hopf quasigroups." Arabian Journal of Mathematics 1, no. 1 (2012): 39–46. http://dx.doi.org/10.1007/s40065-012-0020-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Yokogawa, Kenji. "Hopf-Galois extensions and smash products." Journal of Algebra 107, no. 1 (1987): 138–52. http://dx.doi.org/10.1016/0021-8693(87)90080-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Lück, Wolfgang, Holger Reich, and Marco Varisco. "Commuting Homotopy Limits and Smash Products." K-Theory 30, no. 2 (2003): 137–65. http://dx.doi.org/10.1023/b:kthe.0000018387.87156.c4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Qingzhong, Ji, and Qin Hourong. "On Smash Products Of Hopf Algebras." Communications in Algebra 34, no. 9 (2006): 3203–22. http://dx.doi.org/10.1080/00927870600778365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Osterburg, James. "Smash products and $G$-Galois actions." Proceedings of the American Mathematical Society 98, no. 2 (1986): 217. http://dx.doi.org/10.1090/s0002-9939-1986-0854022-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Baues, Hans-Joachim, and Fernando Muro. "Smash Products for Secondary Homotopy Groups." Applied Categorical Structures 16, no. 5 (2007): 551–616. http://dx.doi.org/10.1007/s10485-007-9071-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Guo, Shuangjian. "On generalized partial twisted smash products." Czechoslovak Mathematical Journal 64, no. 3 (2014): 767–82. http://dx.doi.org/10.1007/s10587-014-0131-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Cai, C. R., and H. X. Chen. "Coactions, Smash Products, and Hopf Modules." Journal of Algebra 167, no. 1 (1994): 85–99. http://dx.doi.org/10.1006/jabr.1994.1176.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Lü, Jiafeng, Panpan Wang, and Ling Liu. "On BiHom-L-R Smash Products." Algebra Colloquium 30, no. 02 (2023): 245–62. http://dx.doi.org/10.1142/s1005386723000202.

Texto completo da fonte
Resumo:
Let [Formula: see text] be a BiHom-Hopf algebra and [Formula: see text] be an [Formula: see text]-BiHom-bimodule algebra, where the maps [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are bijective. We first prove the Maschke-type theorem for the BiHom-L-R smash product over a finite-dimensional semisimple BiHom-Hopf algebra. Next we give a Morita context between the BiHom-subalgebra [Formula: see text] and the BiHom-L-R smash product [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Farinati, Marco. "Hochschild duality, localization, and smash products." Journal of Algebra 284, no. 1 (2005): 415–34. http://dx.doi.org/10.1016/j.jalgebra.2004.09.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

WANG, DINGGUO, and YUANYUAN KE. "THE CALABI–YAU PROPERTY OF TWISTED SMASH PRODUCTS." Journal of Algebra and Its Applications 13, no. 03 (2013): 1350118. http://dx.doi.org/10.1142/s0219498813501181.

Texto completo da fonte
Resumo:
Let H be a finite-dimensional cocommutative semisimple Hopf algebra and A * H a twisted smash product. The Calabi–Yau (CY) property of twisted smash product is discussed. It is shown that if A is a CY algebra of dimension dA, a necessary and sufficient condition for A * H to be a CY Hopf algebra is given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Delvaux, Lydia. "SEMI-DIRECT PRODUCTS OF MULTIPLIER HOPF ALGEBRAS: SMASH PRODUCTS." Communications in Algebra 30, no. 12 (2002): 5961–77. http://dx.doi.org/10.1081/agb-120016026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Zhang, Liangyun, Huixiang Chen, and Jinqi Li. "TWISTED PRODUCTS AND SMASH PRODUCTS OVER WEAK HOPF ALGEBRAS." Acta Mathematica Scientia 24, no. 2 (2004): 247–58. http://dx.doi.org/10.1016/s0252-9602(17)30381-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zhang, Liangyun, and Ruifang Niu. "MASCHKE-TYPE THEOREM FOR PARTIAL SMASH PRODUCTS." International Electronic Journal of Algebra 19, no. 19 (2016): 49. http://dx.doi.org/10.24330/ieja.266192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ulbrich, K. H. "Smash products and comodules of linear maps." Tsukuba Journal of Mathematics 14, no. 2 (1990): 371–78. http://dx.doi.org/10.21099/tkbjm/1496161459.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Cohen, Miriam. "Smash products, inner actions and quotient rings." Pacific Journal of Mathematics 125, no. 1 (1986): 45–66. http://dx.doi.org/10.2140/pjm.1986.125.45.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

GUO, SHUANGJIAN, SHENGXIANG WANG, and LONG WANG. "Partial representation of partial twisted smash products." Publicationes Mathematicae Debrecen 89, no. 1-2 (2016): 23–41. http://dx.doi.org/10.5486/pmd.2016.7277.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

LINCHENKO, V., S. MONTGOMERY, and L. W. SMALL. "STABLE JACOBSON RADICALS AND SEMIPRIME SMASH PRODUCTS." Bulletin of the London Mathematical Society 37, no. 06 (2005): 860–72. http://dx.doi.org/10.1112/s0024609305004662.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Selick, Paul, and Jie Wu. "On functorial decompositions of self-smash products." manuscripta mathematica 111, no. 4 (2003): 435–57. http://dx.doi.org/10.1007/s00229-002-0353-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Liangyun, Zhang. "L-R smash products for bimodule algebras*." Progress in Natural Science 16, no. 6 (2006): 580–87. http://dx.doi.org/10.1080/10020070612330038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Childs, L. N. "Azumaya algebras which are not smash products." Rocky Mountain Journal of Mathematics 20, no. 1 (1990): 75–89. http://dx.doi.org/10.1216/rmjm/1181073160.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Bulacu, Daniel, Florin Panaite, and Freddy Van Oystaeyen. "Quasi-hopf algebra actions and smash products." Communications in Algebra 28, no. 2 (2000): 631–51. http://dx.doi.org/10.1080/00927870008826849.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Yu, Xiaolan, and Yinhuo Zhang. "The Calabi–Yau property of smash products." Journal of Algebra 358 (May 2012): 189–214. http://dx.doi.org/10.1016/j.jalgebra.2012.03.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Zhu, Bin. "Smash products of quasi-hereditary graded algebras." Archiv der Mathematik 72, no. 6 (1999): 433–37. http://dx.doi.org/10.1007/s000130050352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Zheng, Lijing, Chonghui Huang, and Qianhong Wan. "On the representation dimension of smash products." Advances in Applied Clifford Algebras 27, no. 3 (2017): 2885–97. http://dx.doi.org/10.1007/s00006-017-0783-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Wang, Caihong, and Shenglin Zhu. "On smash products of transitive module algebras." Chinese Annals of Mathematics, Series B 31, no. 4 (2010): 541–54. http://dx.doi.org/10.1007/s11401-010-0586-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Fang, Xiao-Li, та Tae-Hwa Kim. "(𝜃,ω)-Twisted Radford’s Hom-biproduct and ϖ-Yetter–Drinfeld modules for Hom-Hopf algebras". Journal of Algebra and Its Applications 19, № 03 (2020): 2050046. http://dx.doi.org/10.1142/s0219498820500462.

Texto completo da fonte
Resumo:
To unify different definitions of smash Hom-products in a Hom-bialgebra [Formula: see text], we firstly introduce the notion of [Formula: see text]-twisted smash Hom-product [Formula: see text]. Secondly, we find necessary and sufficient conditions for the twisted smash Hom-product [Formula: see text] and the twisted smash Hom-coproduct [Formula: see text] to afford a Hom-bialgebra, which generalize the well-known Radford’s biproduct and the Hom-biproduct obtained in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65]. Furthermore, we introduce the notion of the category of [Formula: see text]-Yetter-Drinfeld modules which unifies the ones of Hom-Yetter Drinfeld category appeared in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65] and [A. Makhlouf and F. Panaite, Twisting operators, twisted tensor products and smash products for Hom-associative algebras, J. Math. Glasgow 513–538 (2016) 58]. Finally, we prove that the [Formula: see text]-twisted Radford’s Hom-biproduct [Formula: see text] is a Hom-bialgebra if and only if [Formula: see text] is a Hom-bialgebra in the category of [Formula: see text]-Yetter–Drinfeld modules [Formula: see text], generalizing the well-known Majid’s conclusion.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Panaite, Florin. "Iterated crossed products." Journal of Algebra and Its Applications 13, no. 07 (2014): 1450036. http://dx.doi.org/10.1142/s0219498814500364.

Texto completo da fonte
Resumo:
We define a "mirror version" of Brzeziński's crossed product and we prove that, under certain circumstances, a Brzeziński crossed product D ⊗R,σ V and a mirror version [Formula: see text] may be iterated, obtaining an algebra structure on W ⊗ D ⊗ V. Particular cases of this construction are the iterated twisted tensor product of algebras and the quasi-Hopf two-sided smash product.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Shen, Bingliang, and Ling Liu. "The Maschke-Type Theorem and Morita Context for BiHom-Smash Products." Advances in Mathematical Physics 2021 (January 13, 2021): 1–10. http://dx.doi.org/10.1155/2021/6677332.

Texto completo da fonte
Resumo:
Let H , α H , β H , ω H , ψ H , S H be a BiHom-Hopf algebra and A , α A , β A be an H , α H , β H -module BiHom-algebra. Then, in this paper, we study some properties on the BiHom-smash product A # H . We construct the Maschke-type theorem for the BiHom-smash product A # H and form an associated Morita context A H , A H A A # H , A # H A A H , A # H .
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mu, Qiang. "Smash product construction of modular lattice vertex algebras." Electronic Research Archive 30, no. 1 (2021): 204–20. http://dx.doi.org/10.3934/era.2022011.

Texto completo da fonte
Resumo:
<abstract><p>Motivated by a work of Li, we study nonlocal vertex algebras and their smash products over fields of positive characteristic. Through smash products, modular vertex algebras associated with positive definite even lattices are reconstructed. This gives a different construction of the modular vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator algebras over a field of characteristic zero.</p></abstract>
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Albuquerque, Helena, and Florin Panaite. "On Quasi-Hopf Smash Products and Twisted Tensor Products of Quasialgebras." Algebras and Representation Theory 12, no. 2-5 (2009): 199–234. http://dx.doi.org/10.1007/s10468-009-9143-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Jensen, Anders, and Soren Jondrup. "Smash products, group actions and group graded rings." MATHEMATICA SCANDINAVICA 68 (December 1, 1991): 161. http://dx.doi.org/10.7146/math.scand.a-12353.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Pirkovskii, A. Yu. "Arens-Michael enveloping algebras and analytic smash products." Proceedings of the American Mathematical Society 134, no. 9 (2006): 2621–31. http://dx.doi.org/10.1090/s0002-9939-06-08251-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Bergen, Jeffrey. "A note on smash products over frobenius algebras." Communications in Algebra 21, no. 11 (1993): 4021–24. http://dx.doi.org/10.1080/00927879308824780.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Pan, Qun-xing. "On L-R Smash Products of Hopf Algebras." Communications in Algebra 40, no. 10 (2012): 3955–73. http://dx.doi.org/10.1080/00927872.2011.576735.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!