Artigos de revistas sobre o tema "Small Heat Schok Protein"

Siga este link para ver outros tipos de publicações sobre o tema: Small Heat Schok Protein.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Small Heat Schok Protein".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Friedrich, Kenneth L., Kim C. Giese, Nicole R. Buan e Elizabeth Vierling. "Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes". Journal of Biological Chemistry 279, n.º 2 (22 de outubro de 2003): 1080–89. http://dx.doi.org/10.1074/jbc.m311104200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lee, Garrett J., e Elizabeth Vierling. "A Small Heat Shock Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein". Plant Physiology 122, n.º 1 (1 de janeiro de 2000): 189–98. http://dx.doi.org/10.1104/pp.122.1.189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lindner, Robyn A., John A. Carver, Monika Ehrnsperger, Johannes Buchner, Gennaro Esposito, Joachim Behlke, Gudrun Lutsch, Alexey Kotlyarov e Matthias Gaestel. "Mouse Hsp25, a small heat shock protein". European Journal of Biochemistry 267, n.º 7 (abril de 2000): 1923–32. http://dx.doi.org/10.1046/j.1432-1327.2000.01188.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Vos, Michel J., Marianne P. Zijlstra, Serena Carra, Ody C. M. Sibon e Harm H. Kampinga. "Small heat shock proteins, protein degradation and protein aggregation diseases". Autophagy 7, n.º 1 (janeiro de 2011): 101–3. http://dx.doi.org/10.4161/auto.7.1.13935.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Laskowska, Ewa, Ewelina Matuszewska e Dorota Kuczynska-Wisnik. "Small Heat Shock Proteins and Protein-Misfolding Diseases". Current Pharmaceutical Biotechnology 11, n.º 2 (1 de fevereiro de 2010): 146–57. http://dx.doi.org/10.2174/138920110790909669.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fujita, Eri. "Protein Homeostasis-Small Heat Shock Proteins and Cytoskeleton". Biological Sciences in Space 22, n.º 4 (2008): 148–57. http://dx.doi.org/10.2187/bss.22.148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kim, Kyeong Kyu, Rosalind Kim e Sung-Hou Kim. "Crystal structure of a small heat-shock protein". Nature 394, n.º 6693 (agosto de 1998): 595–99. http://dx.doi.org/10.1038/29106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Shi, Xiaodong, Zhao Wang, Linxuan Yan, Anastasia N. Ezemaduka, Guizhen Fan, Rui Wang, Xinmiao Fu, Changcheng Yin e Zengyi Chang. "Small heat shock protein AgsA forms dynamic fibrils". FEBS Letters 585, n.º 21 (12 de outubro de 2011): 3396–402. http://dx.doi.org/10.1016/j.febslet.2011.09.042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lelj-Garolla, Barbara, e A. Grant Mauk. "Self-association of a Small Heat Shock Protein". Journal of Molecular Biology 345, n.º 3 (janeiro de 2005): 631–42. http://dx.doi.org/10.1016/j.jmb.2004.10.056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Xi, Jing-hua, Fang Bai, Julia Gross, R. Reid Townsend, A. Sue Menko e Usha P. Andley. "Mechanism of Small Heat Shock Protein Functionin Vivo". Journal of Biological Chemistry 283, n.º 9 (5 de dezembro de 2007): 5801–14. http://dx.doi.org/10.1074/jbc.m708704200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Tripathi, Shreya, e Sangeeta Sinha. "Small Heat Shock Protein and Drosophila melanogaster Development". Advances in Zoology and Botany 11, n.º 4 (agosto de 2023): 246–56. http://dx.doi.org/10.13189/azb.2023.110402.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Mandal, Krishnagopal, James Dillon e Elizabeth R. Gaillard. "Heat and Concentration Effects on the Small Heat Shock Protein, α-Crystallin". Photochemistry and Photobiology 71, n.º 4 (1 de maio de 2007): 470–75. http://dx.doi.org/10.1562/0031-8655(2000)0710470haceot2.0.co2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Mandal, Krishnagopal, James Dillon e Elizabeth R. Gaillard. "Heat and Concentration Effects on the Small Heat Shock Protein, α-Crystallin". Photochemistry and Photobiology 71, n.º 4 (2000): 470. http://dx.doi.org/10.1562/0031-8655(2000)071<0470:haceot>2.0.co;2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Muranova, Lydia K., Vladislav M. Shatov, Olesya V. Bukach e Nikolai B. Gusev. "Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family". Biochemistry (Moscow) 86, S1 (janeiro de 2021): S1—S11. http://dx.doi.org/10.1134/s0006297921140017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Carroll, C., A. Encarnacion, M. Khan, A. Fisher e K. Rodriguez. "ELUCIDATING THE ROLE OF SMALL HEAT SHOCK PROTEIN 25 IN PROTEIN AGGREGATION". Innovation in Aging 2, suppl_1 (1 de novembro de 2018): 99. http://dx.doi.org/10.1093/geroni/igy023.372.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Brophy, Colleen M., Shannon Lamb e Audrey Graham. "The small heat shock-related protein–20 is an actin-associated protein". Journal of Vascular Surgery 29, n.º 2 (fevereiro de 1999): 326–33. http://dx.doi.org/10.1016/s0741-5214(99)70385-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Poulain, Pierre, Jean-Christophe Gelly e Delphine Flatters. "Detection and Architecture of Small Heat Shock Protein Monomers". PLoS ONE 5, n.º 4 (7 de abril de 2010): e9990. http://dx.doi.org/10.1371/journal.pone.0009990.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Martin, Tamara P., Susan Currie e George S. Baillie. "The cardioprotective role of small heat-shock protein 20". Biochemical Society Transactions 42, n.º 2 (20 de março de 2014): 270–73. http://dx.doi.org/10.1042/bst20130272.

Texto completo da fonte
Resumo:
The small HSP (heat-shock protein) HSP20 is a molecular chaperone that is transiently up-regulated in response to cellular stress/damage. Although ubiquitously expressed in various tissues, it is most highly expressed in skeletal, cardiac and smooth muscle. Phosphorylation at Ser16 by PKA (cAMP-dependent protein kinase) is essential for HSP20 to confer its protective qualities. HSP20 and its phosphorylation have been implicated in a variety of pathophysiological processes, but most prominently cardiovascular disease. A wealth of knowledge of the importance of HSP20 in contractile function and cardioprotection has been gained over the last decade. The present mini-review highlights more recent findings illustrating the cardioprotective properties of HSP20 and its potential as a therapeutic agent.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kantorow, M., e J. Piatigorsky. "Alpha-crystallin/small heat shock protein has autokinase activity." Proceedings of the National Academy of Sciences 91, n.º 8 (12 de abril de 1994): 3112–16. http://dx.doi.org/10.1073/pnas.91.8.3112.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kim, Rosalind, Kyeong Kyu Kim, Hisao Yokota e Sung-Hou Kim. "Small heat shock protein of Methanococcus jannaschii, a hyperthermophile". Proceedings of the National Academy of Sciences 95, n.º 16 (4 de agosto de 1998): 9129–33. http://dx.doi.org/10.1073/pnas.95.16.9129.

Texto completo da fonte
Resumo:
Small heat shock proteins (sHSPs) belong to a family of 12- to 43-kDa proteins that are ubiquitous and are conserved in amino acid sequence among all organisms. A sHSP homologue of Methanococcus jannaschii, a hyperthermophilic Archaeon, forms a homogeneous multimer comprised of 24 monomers with a molecular mass of 400 kDa in contrast to other sHSPs that show heterogeneous oligomeric complexes. Electron microscopy analysis revealed a spherically shaped oligomeric structure ≈15–20 nm in diameter. The protein confers thermal protection of other proteins in vitro as found in other sHSPs. Escherichia coli cell extracts containing the protein were protected from heat-denatured precipitation when heated up to 100°C, whereas extracts from cells not expressing the protein were heat-sensitive at 60°C. Similar results were obtained when purified sHSP protein was added to an E. coli cell lysate. The protein also prevented the aggregation of two purified proteins: single-chain monellin (SCM) at 80°C and citrate synthase at 40°C.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bepperling, A., F. Alte, T. Kriehuber, N. Braun, S. Weinkauf, M. Groll, M. Haslbeck e J. Buchner. "Alternative bacterial two-component small heat shock protein systems". Proceedings of the National Academy of Sciences 109, n.º 50 (26 de novembro de 2012): 20407–12. http://dx.doi.org/10.1073/pnas.1209565109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Tarumi, K., A. Yagihashi, T. Tsuruma, T. Sakawaki, K. S. Sasaki e K. Hirata. "Heat shock protein improves cold preserved small bowel grafts". Transplantation Proceedings 30, n.º 7 (novembro de 1998): 3455–58. http://dx.doi.org/10.1016/s0041-1345(98)01098-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Klemenz, R., E. Frohli, R. H. Steiger, R. Schafer e A. Aoyama. "Alpha B-crystallin is a small heat shock protein." Proceedings of the National Academy of Sciences 88, n.º 9 (1 de maio de 1991): 3652–56. http://dx.doi.org/10.1073/pnas.88.9.3652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Seit-Nebi, Alim S., e Nikolai B. Gusev. "Versatility of the small heat shock protein HSPB6 (Hsp20)". Cell Stress and Chaperones 15, n.º 3 (24 de setembro de 2009): 233–36. http://dx.doi.org/10.1007/s12192-009-0141-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Morrow, Geneviève, e Robert M. Tanguay. "Small heat shock protein expression and functions during development". International Journal of Biochemistry & Cell Biology 44, n.º 10 (outubro de 2012): 1613–21. http://dx.doi.org/10.1016/j.biocel.2012.03.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Seo, Young Ho. "Small Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery". Journal of Cancer Prevention 20, n.º 1 (30 de março de 2015): 5–11. http://dx.doi.org/10.15430/jcp.2015.20.1.5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Waters, E. R. "The molecular evolution of the small heat-shock proteins in plants." Genetics 141, n.º 2 (1 de outubro de 1995): 785–95. http://dx.doi.org/10.1093/genetics/141.2.785.

Texto completo da fonte
Resumo:
Abstract The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In the study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal the gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions )in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Shemetov, Anton A., Alim S. Seit-Nebi e Nikolai B. Gusev. "Phosphorylation of human small heat shock protein HspB8 (Hsp22) by ERK1 protein kinase". Molecular and Cellular Biochemistry 355, n.º 1-2 (28 de abril de 2011): 47–55. http://dx.doi.org/10.1007/s11010-011-0837-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Härndahl, Ulrika, Ellen Tufvesson e Cecilia Sundby. "The Chloroplast Small Heat Shock Protein—Purification and Characterization of Pea Recombinant Protein". Protein Expression and Purification 14, n.º 1 (outubro de 1998): 87–96. http://dx.doi.org/10.1006/prep.1998.0921.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kourtis, Nikos, e Nektarios Tavernarakis. "Small heat shock proteins and neurodegeneration: recent developments". Biomolecular Concepts 9, n.º 1 (20 de agosto de 2018): 94–102. http://dx.doi.org/10.1515/bmc-2018-0009.

Texto completo da fonte
Resumo:
AbstractMembers of the small heat shock protein (sHSP) family are molecular chaperones with a critical role in the maintenance of cellular homeostasis under unfavorable conditions. The chaperone properties of sHSPs prevent protein aggregation, and sHSP deregulation underlies the pathology of several diseases, including neurodegenerative disorders. Recent evidence suggests that the clientele of sHSPs is broad, and the mechanisms of sHSP-mediated neuroprotection diverse. Nonetheless, the crosstalk of sHSPs with the neurodegeneration-promoting signaling pathways remains poorly understood. Here, we survey recent findings on the role and regulation of sHSPs in neurodegenerative diseases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Tada, S. F. S., F. Javier Medrano, B. Gomes Guimarães, C. L. Pintode Oliveira, Í. Torriani e A. Pereirade Souza. "Structural characterization of a small heat-shock protein fromXylella fastidiosa". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 de agosto de 2005): c139. http://dx.doi.org/10.1107/s0108767305094080.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Gruvberger-Saal, S. K. "Is the small heat shock protein B-crystallin an oncogene?" Journal of Clinical Investigation 116, n.º 1 (8 de dezembro de 2005): 30–32. http://dx.doi.org/10.1172/jci27462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bhat, Narayan R., e Krishna K. Sharma. "Microglial activation by the small heat shock protein, α-crystallin". NeuroReport 10, n.º 13 (setembro de 1999): 2869–73. http://dx.doi.org/10.1097/00001756-199909090-00031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lavoie, José, Pierre Chrétien e Jacques Landry. "Sequence of the Chinese hamster small heat shock protein HSP27". Nucleic Acids Research 18, n.º 6 (1990): 1637. http://dx.doi.org/10.1093/nar/18.6.1637.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

WELSH, MICHAEL J., e MATTIAS GAESTEL. "Small Heat-Shock Protein Family: Function in Health and Disease". Annals of the New York Academy of Sciences 851, n.º 1 STRESS OF LIF (junho de 1998): 28–35. http://dx.doi.org/10.1111/j.1749-6632.1998.tb08973.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Tsuruma, T., A. Yagihashi, S. Koide, J. Araya, K. Tarumi, N. Watanabe e K. Hirata. "Geranylgeranylacetone induces heat shock protein-73 in rat small intestine". Transplantation Proceedings 31, n.º 1-2 (fevereiro de 1999): 572–73. http://dx.doi.org/10.1016/s0041-1345(98)01559-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sanmiya, Kazutsuka, Katsumi Suzuki, Yoshinobu Egawa e Mariko Shono. "Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants". FEBS Letters 557, n.º 1-3 (7 de janeiro de 2004): 265–68. http://dx.doi.org/10.1016/s0014-5793(03)01494-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Leu, J. I.-Ju, Julia Pimkina, Amanda Frank, Maureen E. Murphy e Donna L. George. "A Small Molecule Inhibitor of Inducible Heat Shock Protein 70". Molecular Cell 36, n.º 1 (outubro de 2009): 15–27. http://dx.doi.org/10.1016/j.molcel.2009.09.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hartman, D. "Haemonchus contortus: molecular characterisation of a small heat shock protein". Experimental Parasitology 104, n.º 3-4 (agosto de 2003): 96–103. http://dx.doi.org/10.1016/s0014-4894(03)00138-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

de Jong, Wilfried W., Gert-Jan Caspers e Jack A. M. Leunissen. "Genealogy of the α-crystallin—small heat-shock protein superfamily". International Journal of Biological Macromolecules 22, n.º 3-4 (maio de 1998): 151–62. http://dx.doi.org/10.1016/s0141-8130(98)00013-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Jiao, Wangwang, Pulin Li, Junrui Zhang, Hui Zhang e Zengyi Chang. "Small heat-shock proteins function in the insoluble protein complex". Biochemical and Biophysical Research Communications 335, n.º 1 (setembro de 2005): 227–31. http://dx.doi.org/10.1016/j.bbrc.2005.07.065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Helm, K. W., J. Schmeits e E. Vierling. "An Endomembrane-Localized Small Heat-Shock Protein from Arabidopsis thaliana". Plant Physiology 107, n.º 1 (1 de janeiro de 1995): 287–88. http://dx.doi.org/10.1104/pp.107.1.287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Wang, Keyang, e Abraham Spector. "ATP causes small heat shock proteins to release denatured protein". European Journal of Biochemistry 268, n.º 24 (15 de dezembro de 2001): 6335–45. http://dx.doi.org/10.1046/j.0014-2956.2001.02580.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Vos, Michel J., Bart Kanon e Harm H. Kampinga. "HSPB7 is a SC35 speckle resident small heat shock protein". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793, n.º 8 (agosto de 2009): 1343–53. http://dx.doi.org/10.1016/j.bbamcr.2009.05.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Bukach, Olesya V., Alim S. Seit-Nebi, Steven B. Marston e Nikolai B. Gusev. "Some properties of human small heat shock protein Hsp20 (HspB6)". European Journal of Biochemistry 271, n.º 2 (janeiro de 2004): 291–302. http://dx.doi.org/10.1046/j.1432-1033.2003.03928.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Park, Soo Min, e Choo Bong Hong. "Class I small heat-shock protein gives thermotolerance in tobacco". Journal of Plant Physiology 159, n.º 1 (janeiro de 2002): 25–30. http://dx.doi.org/10.1078/0176-1617-00660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Franzmann, Titus M. "Matrix-assisted refolding of oligomeric small heat-shock protein Hsp26". International Journal of Biological Macromolecules 39, n.º 1-3 (agosto de 2006): 104–10. http://dx.doi.org/10.1016/j.ijbiomac.2006.02.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Badri, Kameswara R., Suhasini Modem, Herve C. Gerard, Insia Khan, Mihir Bagchi, Alan P. Hudson e Thipparthi R. Reddy. "Regulation of Sam68 activity by small heat shock protein 22". Journal of Cellular Biochemistry 99, n.º 5 (2006): 1353–62. http://dx.doi.org/10.1002/jcb.21004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

CHOWDARY, Tirumala Kumar, Bakthisaran RAMAN, Tangirala RAMAKRISHNA e Chintalagiri Mohan RAO. "Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity". Biochemical Journal 381, n.º 2 (6 de julho de 2004): 379–87. http://dx.doi.org/10.1042/bj20031958.

Texto completo da fonte
Resumo:
A newly identified 22 kDa protein that interacts with Hsp27 (heat-shock protein 27) was shown to possess the characteristic α-crystallin domain, hence named Hsp22, and categorized as a member of the sHsp (small Hsp) family. Independent studies from different laboratories reported the protein with different names such as Hsp22, H11 kinase, E2IG1 and HspB8. We have identified, on the basis of the nucleotide sequence analysis, putative heat-shock factor 1 binding sites upstream of the Hsp22 translation start site. We demonstrate that indeed Hsp22 is heat-inducible. We show, in vitro, chaperone-like activity of Hsp22 in preventing dithiothreitol-induced aggregation of insulin and thermal aggregation of citrate synthase. We have cloned rat Hsp22, overexpressed and purified the protein to homogeneity and studied its structural and functional aspects. We find that Hsp22 fragments on storage. MS analysis of fragments suggests that the fragmentation might be due to the presence of labile peptide bonds. We have established conditions to improve its stability. Far-UV CD indicates a randomly coiled structure for Hsp22. Quaternary structure analyses by glycerol density-gradient centrifugation and gel filtration chromatography show that Hsp22 exists as a monomer in vitro, unlike other members of the sHsp family. Hsp22 exhibits significantly exposed hydrophobic surfaces as reported by bis-8-anilinonaphthalene-l-sulphonic acid fluorescence. We find that the chaperone-like activity is temperature dependent. Thus Hsp22 appears to be a true member of the sHsp family, which exists as a monomer in vitro and exhibits chaperone-like activity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Otani, Mieko, Toshiyuki Ueki, Satoshi Kozuka, Miki Segawa, Keiji Sano e Sumiko Inouye. "Characterization of a Small Heat Shock Protein, Mx Hsp16.6, of Myxococcus xanthus". Journal of Bacteriology 187, n.º 15 (1 de agosto de 2005): 5236–41. http://dx.doi.org/10.1128/jb.187.15.5236-5241.2005.

Texto completo da fonte
Resumo:
ABSTRACT A number of heat shock proteins in Myxococcus xanthus were previously identified by two-dimensional (2D) gel electrophoresis. One of these protein was termed Mx Hsp16.6, and the gene encoding Mx Hsp16.6 was isolated. Mx Hsp16.6 consists of 147 amino acid residues and has an estimated molecular weight of 16,642, in accordance with the apparent molecular mass in the 2D gel. An α-crystallin domain, typically conserved in small heat shock proteins, was found in Mx Hsp16.6. Mx Hsp16.6 was not detected during normal vegetative growth but was immediately induced after heat shock. Expression of the hsp16.6 gene was not induced by other stresses, such as starvation, oxidation, and high osmolarity. Mx Hsp16.6 was mostly localized in particles formed after heat shock and precipitated by low-speed centrifugation. Furthermore, Mx Hsp16.6 was detected in highly electron-dense particles in heat-shocked cells by immunoelectron microscopy, suggesting that it forms large complexes with heat-denatured proteins. An insertion mutation in the hsp16.6 gene resulted in lower viability during heat shock and lower acquired thermotolerance. Therefore, it is likely that Mx Hsp16.6 plays critical roles in the heat shock response in M. xanthus.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia