Literatura científica selecionada sobre o tema "Slag"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Slag".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Slag"
Zhang, Kaitian, Jianhua Liu e Heng Cui. "Investigation on the Slag-Steel Reaction of Mold Fluxes Used for Casting Al-TRIP Steel". Metals 9, n.º 4 (1 de abril de 2019): 398. http://dx.doi.org/10.3390/met9040398.
Texto completo da fonteLi, Qi Nan, Guo Jun Ma, Xiang Zhang e Xun Cai. "Characteristics of Metallurgical Waste Slag and its Heating Behavior in a Microwave Field". Key Engineering Materials 680 (fevereiro de 2016): 574–79. http://dx.doi.org/10.4028/www.scientific.net/kem.680.574.
Texto completo da fonteGupta, Avishek Kumar, Matti Aula, Jouni Pihlasalo, Pasi Mäkelä, Marko Huttula e Timo Fabritius. "Preparation of Synthetic Titania Slag Relevant to the Industrial Smelting Process Using an Induction Furnace". Applied Sciences 11, n.º 3 (27 de janeiro de 2021): 1153. http://dx.doi.org/10.3390/app11031153.
Texto completo da fonteZhao, Qiang, Lang Pang e Dengquan Wang. "Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review". Materials 15, n.º 11 (26 de maio de 2022): 3803. http://dx.doi.org/10.3390/ma15113803.
Texto completo da fonteLong, Xiao, Wenbo Luo, Guohong Lu, Falou Chen, Xiaoning Zheng, Xingfan Zhao e Shaolei Long. "Iron Removal from Metallurgical Grade Silicon Melts Using Synthetic Slags and Oxygen Injection". Materials 15, n.º 17 (1 de setembro de 2022): 6042. http://dx.doi.org/10.3390/ma15176042.
Texto completo da fonteLiu, Xingbei, Chao Zhang, Huanan Yu, Guoping Qian, Xiaoguang Zheng, Hongyu Zhou, Lizhang Huang, Feng Zhang e Yixiong Zhong. "Research on the Properties of Steel Slag with Different Preparation Processes". Materials 17, n.º 7 (28 de março de 2024): 1555. http://dx.doi.org/10.3390/ma17071555.
Texto completo da fontePotysz, Anna, Bartosz Mikoda e Michał Napieraj. "(Bio)dissolution of Glassy and Diopside-Bearing Metallurgical Slags: Experimental and Economic Aspects". Minerals 11, n.º 3 (3 de março de 2021): 262. http://dx.doi.org/10.3390/min11030262.
Texto completo da fonteZhou, Sheng Bo, Ai Qin Shen e Geng Fei Li. "Interaction between Slag and Clinker during Cement Hydration Process". Advanced Materials Research 857 (dezembro de 2013): 70–74. http://dx.doi.org/10.4028/www.scientific.net/amr.857.70.
Texto completo da fontePfeiffer, Andreas, Kathrin Thiele, Gerald Wimmer e Johannes Schenk. "Laboratory Scale Evaluation of the Slag Foaming Behavior". IOP Conference Series: Materials Science and Engineering 1309, n.º 1 (1 de maio de 2024): 012007. http://dx.doi.org/10.1088/1757-899x/1309/1/012007.
Texto completo da fonteJiang, Dongbin, Xiaoxuan Peng, Ying Ren, Wen Yang e Lifeng Zhang. "Water modeling on slag entrainment in the slab continuous casting mold". Metallurgical Research & Technology 119, n.º 6 (2022): 601. http://dx.doi.org/10.1051/metal/2022083.
Texto completo da fonteTeses / dissertações sobre o assunto "Slag"
Nassyrov, Dmitri. "Slag solidification modeling". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119538.
Texto completo da fonteDeux modèles capables de prédire les diagrammes temps-température-transformation (TTT) pour des oxydes et oxyfluorures liquides ont été développés. Un des modèles est basé sur l'équation de Johnson-Mehl-Avrami-Kolmogorov (JMAK), et l'autre – utilisant la théorie classique de la nucléation (TCN). La base de données la plus récente a été utilisée pour calculer les propriétés thermodynamiques des phases liquides et solides. Le modèle basé sur l'équation JMAK a démontré un accordement avec les données expérimentales bien meilleur que la TCN. Le modèle développé dans cette étude peut être utilisé pour prédire des diagrammes TTT pour les oxydes contenant pas plus que 50 % massique de SiO2 et pour quelques oxyfluorures.
Sulasalmi, P. (Petri). "Modelling of slag emulsification and slag reduction in CAS-OB process". Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214160.
Texto completo da fonteTiivistelmä CAS-OB -prosessi on sulametallurgiassa käytettävä senkkakäsittelyprosessi, joka on kehitetty teräksen kemialliseen lämmittäseen ja seostukseen. CAS-OB-prosessin pääprosessivaiheet ovat lämmitysvaihe, mahdollinen seostusvaihe ja kuonan pelkistysvaihe. CAS-OB -prosessilla tavoitellaan teräksen koostumuksen homogenisointiin ja lämpötilan kontrollointiin. Tässä tutkimuksessa kehitettiin matemaattinen reaktiomalli CAS-OB -prosessin kuonan pelkistysvaiheen kuvaamiseen. Kuonan pelkistys tapahtuu senkan pohjassa olevien huuhtelutiilien avulla suoritettavan voimakkaan kaasuhuuhtelun avulla. Pohjahuuhtelu aiheuttaa kiertävän teräsvirtauksen senkassa. Teräsvirtaus irrottaa teräksen päällä olevasta kuonakerroksesta pisaroita ja kuonan ja teräksen välinen reaktiopinta-ala kasvaa voimakkaasti. Tämä tarjoaa suotuisat olosuhteet pelkistysreaktiolle senkassa. Pelkistysreaktioiden mallintamiseksi tässä työssä kehitettiin CFD-simulaatioiden avulla alimalli, jonka avulla voidaan kuvata teräksen ja kuonan välisen pinta-alan suuruutta. Pelkistysvaiheen mallissa huomioidaan reaktioiden lisäksi myös systeemissä tapahtuva lämmösiirto. Pelkistysmalli validoitiin mittausdatalla, joka hankittiin SSAB Raahen terässulaton CAS-OB -asemalla järjestetyssä validointikampanjassa. Tutkimuksessa havaittiin, että malli kykenee hyvin ennustamaan teräksen ja kuonan koostumuksen sekä teräksen lämpötilan
Muhmood, Luckman. "Investigations of thermophysical properties of slags with focus on slag-metal interface". Doctoral thesis, KTH, Materialens processvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26611.
Texto completo da fonteQC 20101130
Isaksson, Jenny. "Slag Cleaning of a Reduced Iron Silicate Slag by Settling : Influence of Process Parameters and Slag Modification on Copper Content". Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84798.
Texto completo da fonteWang, Shao-Dong. "Alkaline activation of slag". Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/7767.
Texto completo da fonteNg, Ka Wing 1965. "Skimming of fluid slag". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33340.
Texto completo da fonteBerryman, Eleanor. "Carbonation of steel slag". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110434.
Texto completo da fonteL'industrie du fer et de l'acier est en pleine croissance et sa production mondiale a augmenté de 65% au cours des dix dernières années (World Steel Association, 2012). Malheureusement, elle est également responsable d'un quart des émissions industrielles de CO2 ce qui en fait la plus importante source industrielle de CO2 atmosphérique (International Energy Agency (IEA), 2007).La carbonatation minérale fournit une méthode robuste pour la séquestration permanente du CO2 sous une forme écologiquement inerte. La larnite (Ca2SiO4), constituant principal des scories d'acier, réagit aisément avec le CO2 aqueux (Santos et al., 2009). Par conséquent, sa carbonatation offre une importante occasion de réduire à la source les émissions de CO2. Un avantage potentiel supplémentaire de ce traitement est de rendre les scories d'acier convenables pour le recyclage. Cette étude examine l'impact de la température, le flux molaire surfacique du fluide carbonaté, et d'un gradient de réaction sur la dissolution et la carbonatation des scories d'acier. Elle s'inscrit dans une étude plus large visant à déterminer les conditions optimisant la conversion de la larnite, et d'autres silicates de calcium, à la calcite.Des expériences ont été menées sur des grains de scories d'acier d'un diamètre de 2 à 3 mm fournis par Tata Steel RD&T. Un mélange de CO2-H2O a été pompé à travers un réacteur continu contenant ces grains et maintenu à une température entre 120°C et 200°C, une pression de 250 bar et à des flux molaires surfaciques de 0.8 à 6 mmol/cm2min. Chaque expérience a duré de 3 à 7 jours. Le fluide CO2-H2O a réagi avec les grains de scories d'acier et a formé des minéraux de carbonate de calcium contenant du phosphore. À flux molaire surfacique élevé, soit 6 mL/cm2min, ces phases sont dissoutes aux bords des grains, laissant place à une bordure poreuse d'oxydes d'aluminum et de fer. Une augmentation de la température a augmenté la vitesse de cette réaction. A valeur intermédaire de flux molaire surfacique, 0.8 mL/cm2min, le degré de carbonatation a augmenté. Au lieu laisser des bordures poreuses d'oxydes, les minéraux de calcium primaires en marge des grains ont plutôt été remplacés par des phases de calcium carbonate contenant du phosphore. En plus, l'usage d'un réacteur plus long a créé un gradient de réaction et maintenu la supersaturation du fluide relative au carbonate de calcium qui a enrobé les grains. Les scories d'acier exposées au fluide dans un réacteur discontinu (sans flux de fluide) ont été moins carbonatées; la dissolution non-congruente de la scorie a pris place suivie par l'enrobage des grains de scories par le carbonate, et ce dernier a réduit la surface de réaction de la scorie avec le fluide.Les résultats de cette étude démontrent que la carbonatation par le CO2 aqueux des scories d'acier à granulométrie relativement grossière est possible et qu'elle peut être optimisée en variant le flux molaire surfacique du fluide. Les expériences de ce type contribueront à la réduction éventuelle des émissions industrielles globales de CO2.
Ekengård, Johan. "Aspects on slag/metal equilibrium calculations and metal droplet characteristics in ladle slags". Licentiate thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1788.
Texto completo da fonteIn the present work the mixing between the metal and slagphase during the ladle refining process from tapping from theelectric arc furnace to casting in two different Swedish steelplants has been studied.
Three slag models and the sulphur-oxygen equilibrium betweenslag and steel was used together with the dilute solution modelfor the liquid steel phase to predict the equilibrium oxygenactivity in steel bulk and metal droplets in top slag inequilibrium with the top slag. The predicted oxygen activitieswere compared with measured oxygen activities from the steelbulk. The results show significant discrepancies between thecalculated and measured oxygen activities and the reasons forthe differences are discussed.
Metal droplet distribution in slag samples have also beendetermined using classification according to the Swedishstandard SS111116. It was found that most metal droplets arefound in the slag samples taken before vacuum degassing. Thetotal area between steel droplets and slag has been determinedto be 3 to 14 times larger than the projected flat interfacearea between top slag and steel. The effect of slag viscosityand reactions between steel and slag on the metal dropletformation in slags is also discussed.
The chemical composition of the metal droplets in the topslag was determined and possible reactions taking place betweenthe steel droplets and the slag was studied. Differencesbetween steel droplet compositions and the bulk steelcomposition are discussed. The results show significantdifferences between steel droplet and bulk steelcomposition.
Key words:oxygen activity, metal droplets, sulphur,slag, ladle, refining, distribution.
Johnston, Murray. "Thermodynamics of selenium and tellurium in molten metallurgical slags and alloys". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0064.
Texto completo da fonteGautier, Annaig. "Luminescence dating of archaeometallurgical slag". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326805.
Texto completo da fonteLivros sobre o assunto "Slag"
1947-, Hare David, ed. Slag. London]: Bloomsbury, 2013.
Encontre o texto completo da fontePrunty, Andersen. Slag attack. Portland, OR: Eraserhead Press, 2010.
Encontre o texto completo da fonteZamalloa, V. Manuel. Slag foaming. Ottawa: National Library of Canada, 1992.
Encontre o texto completo da fonteEisenhüttenleute, Verein Deutscher, e Verein Deutscher Eisenhüttenleute. Ausschuss für Metallurgische Grundlagen, eds. Slag atlas. Düsseldorf: Verlag Stahleisen, 1995.
Encontre o texto completo da fonteSmirnova, L. A., dokt. tekhn. nauk., Deri͡a︡bina A. A e Uralʹskiĭ nauchno-issledovatelʹskiĭ institut chernykh metallov., eds. Shlaki chernoĭ metallurgii, ikh pererabotka i ispolʹzovanie. Sverdlovsk: Uralʹskiĭ nauchno-issl. in-t chernykh metallov, 1990.
Encontre o texto completo da fonteBril, Martin. De Franse slag. Amsterdam: Uitgeverij 521, 2004.
Encontre o texto completo da fonteDorsman, Leen. 1600, slag bij Nieuwpoort. Hilversum: Verloren, 2000.
Encontre o texto completo da fonteDudley, Anton. Slag heap: A play. New York: Playscripts, Inc., 2011.
Encontre o texto completo da fonteWaa, Frits van der, 1954-, ed. De slag van Andriessen. Amsterdam: De Bezige Bij, 1993.
Encontre o texto completo da fonteVries, Izak De. Kom slag ʼn bees. Kaapstad: Tafelberg, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Slag"
Ying, Qu, e Xu Kuangdi. "Slag". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1171-1.
Texto completo da fonteGooch, Jan W. "Weld Slag". In Encyclopedic Dictionary of Polymers, 809. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12782.
Texto completo da fonteShamsuddin, Mohammad. "Metallurgical Slag". In Physical Chemistry of Metallurgical Processes, Second Edition, 107–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58069-8_4.
Texto completo da fonteThanh, H. T., M. J. Tapas, J. Chandler e V. Sirivivatnanon. "Creep of Slag Blended Cement Concrete with and Without Activator". In Lecture Notes in Civil Engineering, 177–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_19.
Texto completo da fonteLv, Xuewei, e Zhiming Yan. "Slag Structure of High Alumina Blast Furnace Slag". In High Temperature Physicochemical Properties of High Alumina Blast Furnace Slag, 43–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3288-5_3.
Texto completo da fonteIguchi, Manabu, e Olusegun J. Ilegbusi. "Slag–Metal Interaction". In Modeling Multiphase Materials Processes, 215–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7479-2_6.
Texto completo da fonteLiu, Liu, e Xu Kuangdi. "Slag Splashing Technology". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_993-1.
Texto completo da fonteLubyanoi, Dmitriy, Evgeniy Kuzin, Evgeniy Zvarych, Dmitriy Malyshkin e Olga Semenova. "Transportation of Liquid Slag in Cast Iron Slag Bowls". In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022), 1–10. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-37978-9_1.
Texto completo da fontePerederiy, llya, Vladimiros G. Papangelakis e Indje Mihaylov. "Nickel Smelter Slag Microstructure and Its Effect on Slag Leachability". In T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 225–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364833.ch20.
Texto completo da fonteHe, Mingsheng, Bowen Li, Wangzhi Zhou, Huasheng Chen, Meng Liu e Long Zou. "Preparation and Characteristics of Steel Slag Ceramics from Converter Slag". In The Minerals, Metals & Materials Series, 13–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Slag"
Hamama, Ayoub, M. Harrami, M. Saadi, A. Assani e Adeljebbar Diouri. "Physico-Chemical Characterization of the Electric Arc Furnace Slag (EAFS) of the Sonasid-Jorf Steelworks - Morocco". In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.691.
Texto completo da fonteGudenau, H. W., H. Hoberg e A. Mayerhofer. "Hot Gas Cleaning for Combined Cycle Based on Pressurized Coal Combustion". In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-417.
Texto completo da fonteLiu, Sheng, e Yingli Hao. "A Critical Review of Slag Properties of Chinese Coals for Entrained Flow Coal Gasifier". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43307.
Texto completo da fonteSun, Xiaowei, Wanyang Niu e Jingbo Zhao. "Performance Research on Slag-Steel Slag Based Composite Portland Cement". In 2015 International Conference on Advanced Engineering Materials and Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaemt-15.2015.142.
Texto completo da fonteDunster, A. "The use of blastfurnace slag and steel slag as aggregates". In Proceedings of the Fourth European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Bitmat 4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203743928-38.
Texto completo da fonteLee, Junesuk, Geon-Tae Ahn, Byoung-Ju Yun e Soon-Yong Park. "Slag Removal Path Estimation by Slag Distribution and Deep Learning". In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008944602460252.
Texto completo da fonteEne, Nicoleta Mariana, Carmen Răcănel e Adrian Burlacu. "The study of moisture susceptibility for asphalt mixtures containing blast furnace slags". In 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1049.
Texto completo da fonteYatsenko, E. A., B. M. Goltsman, V. A. Smolii e A. S. Kosarev. "Foamed slag glass - eco-friendly insulating material based on slag waste". In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165270.
Texto completo da fonteYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang e T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_622_627.
Texto completo da fonteYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang e T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_622_627.
Texto completo da fonteRelatórios de organizações sobre o assunto "Slag"
Gorman, Patrick K. Slag recycling of irradiated vanadium. Office of Scientific and Technical Information (OSTI), abril de 1995. http://dx.doi.org/10.2172/115735.
Texto completo da fonteSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), outubro de 1989. http://dx.doi.org/10.2172/7152112.
Texto completo da fonteSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), janeiro de 1990. http://dx.doi.org/10.2172/7169639.
Texto completo da fonteSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), março de 1990. http://dx.doi.org/10.2172/7249623.
Texto completo da fonteSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), janeiro de 1989. http://dx.doi.org/10.2172/7008009.
Texto completo da fonteSolomon, P. R., J. R. Markham, P. E. Best e Zhen-Zhong Yu. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), outubro de 1990. http://dx.doi.org/10.2172/7054651.
Texto completo da fonteVerian, Kho Pin, Parth Panchmatia e Jan Olek. Investigation of Use of Slag Aggregates and Slag Cements in Concrete Pavements to Reduce the Maintenance Cost. Purdue University, maio de 2018. http://dx.doi.org/10.5703/1288284316362.
Texto completo da fonteYildirim, Irem, e Monica Prezzi. Use of Steel Slag in Subgrade Applications. West Lafayette, Indiana: Purdue University, 2011. http://dx.doi.org/10.5703/1288284314275.
Texto completo da fonteMcDaniel, E. (Immobilization of technetium in blast furnace slag). Office of Scientific and Technical Information (OSTI), novembro de 1989. http://dx.doi.org/10.2172/5385009.
Texto completo da fonteRudisill, T. S., J. H. Gray, D. G. Karraker e G. T. Chandler. Canyon dissolution of sand, slag, and crucible residues. Office of Scientific and Technical Information (OSTI), dezembro de 1997. http://dx.doi.org/10.2172/574512.
Texto completo da fonte