Artigos de revistas sobre o tema "Skeletal muscle"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Skeletal muscle".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Tan, Xin Feng, Bo Feng, Juan Dong, Karen Haas, Barbara M. Nicklas, Osvaldo Delbono e Stephen Kritchevsky. "CARDIAC TROPONIN T MEDIATED AUTOIMMUNE RESPONSE AND ITS ROLE IN SKELETAL MUSCLE AGING". Innovation in Aging 3, Supplement_1 (novembro de 2019): S882. http://dx.doi.org/10.1093/geroni/igz038.3231.
Texto completo da fonteKholodnyi, R. D. "MODELING THE SKELETAL MUSCLE INJURY IN RATS". International Journal of Veterinary Medicine, n.º 3 (18 de outubro de 2022): 253–57. http://dx.doi.org/10.52419/issn2072-2419.2022.3.253.
Texto completo da fonteAzab, Azab. "Skeletal Muscles: Insight into Embryonic Development, Satellite Cells, Histology, Ultrastructure, Innervation, Contraction and Relaxation, Causes, Pathophysiology, and Treatment of Volumetric Muscle I". Biotechnology and Bioprocessing 2, n.º 4 (28 de maio de 2021): 01–17. http://dx.doi.org/10.31579/2766-2314/038.
Texto completo da fonteHeo, Jun-Won, Su-Zi Yoo, Mi-Hyun No, Dong-Ho Park, Ju-Hee Kang, Tae-Woon Kim, Chang-Ju Kim et al. "Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle". International Journal of Environmental Research and Public Health 15, n.º 10 (19 de outubro de 2018): 2301. http://dx.doi.org/10.3390/ijerph15102301.
Texto completo da fonteSandage, Mary J., e Audrey G. Smith. "Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology". Journal of Speech, Language, and Hearing Research 60, n.º 5 (24 de maio de 2017): 1254–63. http://dx.doi.org/10.1044/2016_jslhr-s-16-0192.
Texto completo da fonteChen, Wan-Jing, I.-Hsuan Lin, Chien-Wei Lee e Yi-Fan Chen. "Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury". International Journal of Molecular Sciences 22, n.º 4 (20 de fevereiro de 2021): 2123. http://dx.doi.org/10.3390/ijms22042123.
Texto completo da fonteLieber, Richard L. "Skeletal Muscle". Medicine & Science in Sports & Exercise 38, Supplement (maio de 2006): 63. http://dx.doi.org/10.1249/00005768-200605001-00585.
Texto completo da fonteKoroteyev, Alexis, Alberto Pochettino, Hiroshi Niinami e Larry W. Stephenson. "Skeletal Muscle". AORN Journal 53, n.º 4 (abril de 1991): 1005–20. http://dx.doi.org/10.1016/s0001-2092(07)69569-6.
Texto completo da fonteIto, Daisuke, Yuji Tokoro, Eiichi Tanaka e Sota Yamamoto. "A Constitutive Model for Skeletal Muscle Taking Account of Anisotropic Damage and Viscoelasticity(2C1 Musculo-Skeletal Biomechanics IV)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S152. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s152.
Texto completo da fonteRamamani, A., M. M. Aruldhas e P. Govindarajulu. "Differential response of rat skeletal muscle glycogen metabolism to testosterone and estradiol". Canadian Journal of Physiology and Pharmacology 77, n.º 4 (1 de abril de 1999): 300–304. http://dx.doi.org/10.1139/y99-016.
Texto completo da fonteWu, G. Y., e J. R. Thompson. "Is methionine transaminated in skeletal muscle?" Biochemical Journal 257, n.º 1 (1 de janeiro de 1989): 281–84. http://dx.doi.org/10.1042/bj2570281.
Texto completo da fonteShiina, Takahiko, Takeshi Shima, Kazuaki Masuda, Haruko Hirayama, Momoe Iwami, Tadashi Takewaki, Hirofumi Kuramoto e Yasutake Shimizu. "Contractile Properties of Esophageal Striated Muscle: Comparison with Cardiac and Skeletal Muscles in Rats". Journal of Biomedicine and Biotechnology 2010 (2010): 1–7. http://dx.doi.org/10.1155/2010/459789.
Texto completo da fonteBilston, Lynne E., Bart Bolsterlee, Antoine Nordez e Shantanu Sinha. "Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo". Journal of Applied Physiology 126, n.º 5 (1 de maio de 2019): 1454–64. http://dx.doi.org/10.1152/japplphysiol.00672.2018.
Texto completo da fonteBrooks, Susan V. "CURRENT TOPICS FOR TEACHING SKELETAL MUSCLE PHYSIOLOGY". Advances in Physiology Education 27, n.º 4 (dezembro de 2003): 171–82. http://dx.doi.org/10.1152/advan.2003.27.4.171.
Texto completo da fonteHøeg, Louise D., Kim A. Sjøberg, Anne-Marie Lundsgaard, Andreas B. Jordy, Natalie Hiscock, Jørgen F. P. Wojtaszewski, Erik A. Richter e Bente Kiens. "Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women". Journal of Applied Physiology 114, n.º 5 (1 de março de 2013): 592–601. http://dx.doi.org/10.1152/japplphysiol.01046.2012.
Texto completo da fonteBarry, DT. "Acoustic Signals from Skeletal Muscle". Physiology 5, n.º 1 (1 de fevereiro de 1990): 17–21. http://dx.doi.org/10.1152/physiologyonline.1990.5.1.17.
Texto completo da fonteShirakawa, Tomohiko, Aki Miyawaki, Tatsuo Kawamoto e Shoichiro Kokabu. "Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy". International Journal of Molecular Sciences 22, n.º 15 (2 de agosto de 2021): 8310. http://dx.doi.org/10.3390/ijms22158310.
Texto completo da fontePotthoff, Matthew J., Michael A. Arnold, John McAnally, James A. Richardson, Rhonda Bassel-Duby e Eric N. Olson. "Regulation of Skeletal Muscle Sarcomere Integrity and Postnatal Muscle Function by Mef2c". Molecular and Cellular Biology 27, n.º 23 (17 de setembro de 2007): 8143–51. http://dx.doi.org/10.1128/mcb.01187-07.
Texto completo da fonteArdhianto, Peter, Jen-Yung Tsai, Chih-Yang Lin, Ben-Yi Liau, Yih-Kuen Jan, Veit Babak Hamun Akbari e Chi-Wen Lung. "A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images". Applied Sciences 11, n.º 9 (28 de abril de 2021): 4021. http://dx.doi.org/10.3390/app11094021.
Texto completo da fonteHinkle, Richard T., Elizabeth Donnelly, David B. Cody, Russell J. Sheldon e Robert J. Isfort. "Activation of the vasoactive intestinal peptide 2 receptor modulates normal and atrophying skeletal muscle mass and force". Journal of Applied Physiology 98, n.º 2 (fevereiro de 2005): 655–62. http://dx.doi.org/10.1152/japplphysiol.00736.2004.
Texto completo da fonteNorheim, Frode, Truls Raastad, Bernd Thiede, Arild C. Rustan, Christian A. Drevon e Fred Haugen. "Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training". American Journal of Physiology-Endocrinology and Metabolism 301, n.º 5 (novembro de 2011): E1013—E1021. http://dx.doi.org/10.1152/ajpendo.00326.2011.
Texto completo da fonteHerring, B. P., M. H. Nunnally, P. J. Gallagher e J. T. Stull. "Molecular characterization of rat skeletal muscle myosin light chain kinase". American Journal of Physiology-Cell Physiology 256, n.º 2 (1 de fevereiro de 1989): C399—C404. http://dx.doi.org/10.1152/ajpcell.1989.256.2.c399.
Texto completo da fonteDU, Jian-tong, Wei LI, Jin-yan YANG, Chao-shu TANG, Qi LI e Hong-fang JIN. "Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress". Chinese Medical Journal 126, n.º 5 (5 de março de 2013): 930–36. http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20122485.
Texto completo da fonteGao, Jinghui, Elijah Sterling, Rachel Hankin, Aria Sikal e Yao Yao. "Therapeutics Targeting Skeletal Muscle in Amyotrophic Lateral Sclerosis". Biomolecules 14, n.º 7 (22 de julho de 2024): 878. http://dx.doi.org/10.3390/biom14070878.
Texto completo da fontePistilli, Emidio E., Parco M. Siu e Stephen E. Alway. "Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy". American Journal of Physiology-Cell Physiology 292, n.º 4 (abril de 2007): C1298—C1304. http://dx.doi.org/10.1152/ajpcell.00496.2006.
Texto completo da fonteHitachi, Keisuke, Masashi Nakatani e Kunihiro Tsuchida. "Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle". Non-Coding RNA 5, n.º 2 (8 de abril de 2019): 33. http://dx.doi.org/10.3390/ncrna5020033.
Texto completo da fonteMaas, Huub, e Thomas G. Sandercock. "Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages". Journal of Biomedicine and Biotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/575672.
Texto completo da fonteChen, Ting, Timothy M. Moore, Mark T. W. Ebbert, Natalie L. McVey, Steven R. Madsen, David M. Hallowell, Alexander M. Harris et al. "Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle". Journal of Applied Physiology 120, n.º 8 (15 de abril de 2016): 876–88. http://dx.doi.org/10.1152/japplphysiol.00727.2015.
Texto completo da fontePedersen, Thomas H., Frank de Paoli e Ole B. Nielsen. "Increased Excitability of Acidified Skeletal Muscle". Journal of General Physiology 125, n.º 2 (31 de janeiro de 2005): 237–46. http://dx.doi.org/10.1085/jgp.200409173.
Texto completo da fonteSnyder, G. K., C. Farrelly e J. R. Coelho. "Capillary perfusion in skeletal muscle". American Journal of Physiology-Heart and Circulatory Physiology 262, n.º 3 (1 de março de 1992): H828—H832. http://dx.doi.org/10.1152/ajpheart.1992.262.3.h828.
Texto completo da fonteEržen, Ida. "PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY". Image Analysis & Stereology 23, n.º 3 (3 de maio de 2011): 143. http://dx.doi.org/10.5566/ias.v23.p143-152.
Texto completo da fonteDao, Tien Tuan, e Marie-Christine Ho Ba Tho. "A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations". Applied Bionics and Biomechanics 2018 (6 de dezembro de 2018): 1–17. http://dx.doi.org/10.1155/2018/7631818.
Texto completo da fonteHeidlauf, Thomas, e Oliver Röhrle. "Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS". Computational and Mathematical Methods in Medicine 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/517287.
Texto completo da fonteFujii, Nobuharu, Marni D. Boppart, Scott D. Dufresne, Patricia F. Crowley, Alison C. Jozsi, Kei Sakamoto, Haiyan Yu et al. "Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity". American Journal of Physiology-Cell Physiology 287, n.º 1 (julho de 2004): C200—C208. http://dx.doi.org/10.1152/ajpcell.00415.2003.
Texto completo da fonteZhou, Daixing, Jeanine A. Ursitti e Robert J. Bloch. "Developmental Expression of Spectrins in Rat Skeletal Muscle". Molecular Biology of the Cell 9, n.º 1 (janeiro de 1998): 47–61. http://dx.doi.org/10.1091/mbc.9.1.47.
Texto completo da fonteHussain, Sabah N. A., e Marco Sandri. "Role of autophagy in COPD skeletal muscle dysfunction". Journal of Applied Physiology 114, n.º 9 (1 de maio de 2013): 1273–81. http://dx.doi.org/10.1152/japplphysiol.00893.2012.
Texto completo da fonteGomez-Cabrera, M. C., G. L. Close, A. Kayani, A. McArdle, J. Viña e M. J. Jackson. "Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, n.º 1 (janeiro de 2010): R2—R8. http://dx.doi.org/10.1152/ajpregu.00142.2009.
Texto completo da fonteCollins, Asiamah Amponsah, Kun Zou, Zhang Li e Su Ying. "Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review". Annals of Animal Science 19, n.º 4 (1 de outubro de 2019): 887–904. http://dx.doi.org/10.2478/aoas-2019-0049.
Texto completo da fonteMinami, Elina, Hans Reinecke e Charles E. Murry. "Skeletal muscle meets cardiac muscle". Journal of the American College of Cardiology 41, n.º 7 (abril de 2003): 1084–86. http://dx.doi.org/10.1016/s0735-1097(03)00083-4.
Texto completo da fonteCabezas Perez, Ricardo Julián, Marco Fidel Ávila Rodríguez e Doris Haydee Rosero Salazar. "Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery". Biomedicines 10, n.º 10 (13 de outubro de 2022): 2557. http://dx.doi.org/10.3390/biomedicines10102557.
Texto completo da fonteKohno, Shohei, Yui Yamashita, Tomoki Abe, Katsuya Hirasaka, Motoko Oarada, Ayako Ohno, Shigetada Teshima-Kondo et al. "Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages". Journal of Applied Physiology 112, n.º 10 (15 de maio de 2012): 1773–82. http://dx.doi.org/10.1152/japplphysiol.00103.2012.
Texto completo da fonteMcDonough, Alicia A., Curtis B. Thompson e Jang H. Youn. "Skeletal muscle regulates extracellular potassium". American Journal of Physiology-Renal Physiology 282, n.º 6 (1 de junho de 2002): F967—F974. http://dx.doi.org/10.1152/ajprenal.00360.2001.
Texto completo da fonteEng, Diana, Hsiao-Yen Ma, Michael K. Gross e Chrissa Kioussi. "Gene Networks during Skeletal Myogenesis". ISRN Developmental Biology 2013 (19 de setembro de 2013): 1–8. http://dx.doi.org/10.1155/2013/348704.
Texto completo da fonteSong, Taejeong, James W. McNamara, Weikang Ma, Maicon Landim-Vieira, Kyoung Hwan Lee, Lisa A. Martin, Judith A. Heiny et al. "Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction". Proceedings of the National Academy of Sciences 118, n.º 17 (22 de abril de 2021): e2003596118. http://dx.doi.org/10.1073/pnas.2003596118.
Texto completo da fontePark, Joo Yeon, Sun Mi Park, Tae Sup Lee, Seo Young Kang, Ji-Young Kim, Hai-Jeon Yoon, Bom Sahn Kim e Byung Seok Moon. "Radiopharmaceuticals for Skeletal Muscle PET Imaging". International Journal of Molecular Sciences 25, n.º 9 (29 de abril de 2024): 4860. http://dx.doi.org/10.3390/ijms25094860.
Texto completo da fontePark, Song-Young, Jayson R. Gifford, Robert H. I. Andtbacka, Joel D. Trinity, John R. Hyngstrom, Ryan S. Garten, Nikolaos A. Diakos et al. "Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?" American Journal of Physiology-Heart and Circulatory Physiology 307, n.º 3 (1 de agosto de 2014): H346—H352. http://dx.doi.org/10.1152/ajpheart.00227.2014.
Texto completo da fonteNaruse, Masatoshi, William Fountain, Alex Claiborne, Holmes Finch, Scott Trappe e Todd Trappe. "MUSCLE GROUP SPECIFIC SKELETAL MUSCLE AGING: A FIVE YEAR LONGITUDINAL STUDY IN SEPTUAGENARIANS". Innovation in Aging 6, Supplement_1 (1 de novembro de 2022): 800. http://dx.doi.org/10.1093/geroni/igac059.2887.
Texto completo da fonteMacdonald, W. A., N. Ørtenblad e O. B. Nielsen. "Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions". American Journal of Physiology-Endocrinology and Metabolism 292, n.º 3 (março de 2007): E771—E778. http://dx.doi.org/10.1152/ajpendo.00378.2006.
Texto completo da fonteCONTI, Antonio, L. GORZA e Vincenzo SORRENTINO. "Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles". Biochemical Journal 316, n.º 1 (15 de maio de 1996): 19–23. http://dx.doi.org/10.1042/bj3160019.
Texto completo da fonteRasmussen, Tara, e Haley Tucker. "Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants". Diseases 7, n.º 1 (20 de dezembro de 2018): 1. http://dx.doi.org/10.3390/diseases7010001.
Texto completo da fonte