Artigos de revistas sobre o tema "Single metallic nanoparticles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Single metallic nanoparticles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ngo, Minh Quang. "Localized Surface Plasmon Resonances with Spherical Metallic Nanoparticles". Communications in Physics 28, n.º 2 (17 de julho de 2018): 115. http://dx.doi.org/10.15625/0868-3166/28/2/11037.
Texto completo da fonteCompostella, Federica, Olimpia Pitirollo, Alessandro Silvestri e Laura Polito. "Glyco-gold nanoparticles: synthesis and applications". Beilstein Journal of Organic Chemistry 13 (24 de maio de 2017): 1008–21. http://dx.doi.org/10.3762/bjoc.13.100.
Texto completo da fonteHohenester, U., e A. Trugler. "Interaction of Single Molecules With Metallic Nanoparticles". IEEE Journal of Selected Topics in Quantum Electronics 14, n.º 6 (2008): 1430–40. http://dx.doi.org/10.1109/jstqe.2008.2007918.
Texto completo da fonteKlar, T., M. Perner, S. Grosse, G. von Plessen, W. Spirkl e J. Feldmann. "Surface-Plasmon Resonances in Single Metallic Nanoparticles". Physical Review Letters 80, n.º 19 (11 de maio de 1998): 4249–52. http://dx.doi.org/10.1103/physrevlett.80.4249.
Texto completo da fonteRamos Uña, Rafael, Braulio García Cámara e Ángela I. Barreda. "An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots". Nanomaterials 14, n.º 22 (14 de novembro de 2024): 1822. http://dx.doi.org/10.3390/nano14221822.
Texto completo da fonteLevratovsky, Y., e E. Gross. "High spatial resolution mapping of chemically-active self-assembled N-heterocyclic carbenes on Pt nanoparticles". Faraday Discussions 188 (2016): 345–53. http://dx.doi.org/10.1039/c5fd00194c.
Texto completo da fonteJahr, Norbert, Mamuna Anwar, Ondrej Stranik, Nicole Hädrich, Nadine Vogler, Andrea Csaki, Jürgen Popp e Wolfgang Fritzsche. "Spectroscopy on Single Metallic Nanoparticles Using Subwavelength Apertures". Journal of Physical Chemistry C 117, n.º 15 (4 de abril de 2013): 7751–56. http://dx.doi.org/10.1021/jp311135g.
Texto completo da fonteYedoti, Venkateswarlu, e N. Supraja. "A Review on Algal Mediated Synthesized Metallic Nanoparticles: An Eco-Friendly Approach for Sustainable Nanotechnology". Current Journal of Applied Science and Technology 43, n.º 6 (3 de maio de 2024): 1–10. http://dx.doi.org/10.9734/cjast/2024/v43i64381.
Texto completo da fonteDoan-Nguyen, Vicky, Simon Kimber, Diego Pontoni, Danielle Reifsnyder, Benjamin Diroll, Xiaohao Yang, Marcel Miglierini, Christopher Murray e Simon Billinge. "Size-dependent non-space filling atomic packing in metallic nanoparticles". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C867. http://dx.doi.org/10.1107/s2053273314091323.
Texto completo da fonteRaza, Qadeer, M. Zubair Akbar Qureshi, Bagh Ali, Ahmed Kadhim Hussein, Behzad Ali Khan, Nehad Ali Shah e Wajaree Weera. "Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks". Mathematics 10, n.º 18 (9 de setembro de 2022): 3280. http://dx.doi.org/10.3390/math10183280.
Texto completo da fontePayne, Lukas, George Zoriniants, Francesco Masia, Kenton P. Arkill, Paul Verkade, Darren Rowles, Wolfgang Langbein e Paola Borri. "Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing". Faraday Discussions 184 (2015): 305–20. http://dx.doi.org/10.1039/c5fd00079c.
Texto completo da fonteZampardi, Giorgia, e Richard G. Compton. "Fast electrodeposition of zinc onto single zinc nanoparticles". Journal of Solid State Electrochemistry 24, n.º 11-12 (14 de março de 2020): 2695–702. http://dx.doi.org/10.1007/s10008-020-04539-9.
Texto completo da fonteGayduchenko, Igor, Georgy Fedorov, Ramil Ibragimov, Tatiana Stepanova, Arsen Gazaliev, Nikolay Vysochanskiy, Yuri Bobrov, Anton Malovichko, Ilya Sosnin e Ivan Bobrinetskiy. "Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles". Chemical Industry 70, n.º 1 (2016): 1–8. http://dx.doi.org/10.2298/hemind140910005g.
Texto completo da fonteFerrando, Riccardo. "Mass Transport in Nanoalloys Studied by Atomistic Models". Diffusion Foundations 12 (setembro de 2017): 23–37. http://dx.doi.org/10.4028/www.scientific.net/df.12.23.
Texto completo da fonteAlam, M., e Y. Massoud. "RLC Ladder Model for Scattering in Single Metallic Nanoparticles". IEEE Transactions On Nanotechnology 5, n.º 5 (setembro de 2006): 491–98. http://dx.doi.org/10.1109/tnano.2006.880403.
Texto completo da fonteBarber, Angela, Sun Kly, Matthew G. Moffitt, Logan Rand e James F. Ranville. "Coupling single particle ICP-MS with field-flow fractionation for characterizing metal nanoparticles contained in nanoplastic colloids". Environmental Science: Nano 7, n.º 2 (2020): 514–24. http://dx.doi.org/10.1039/c9en00637k.
Texto completo da fonteRoa, Rafael, Stefano Angioletti-Uberti, Yan Lu, Joachim Dzubiella, Francesco Piazza e Matthias Ballauff. "Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors". Zeitschrift für Physikalische Chemie 232, n.º 5-6 (24 de maio de 2018): 773–803. http://dx.doi.org/10.1515/zpch-2017-1078.
Texto completo da fonteJensen, Rebecca A., Jennifer Sherin e Steven R. Emory. "Single Nanoparticle Based Optical pH Probe". Applied Spectroscopy 61, n.º 8 (agosto de 2007): 832–38. http://dx.doi.org/10.1366/000370207781540105.
Texto completo da fonteQureshi, Zubair Akbar, Sardar Bilal, Imtiaz Ali Shah, Ali Akgül, Rabab Jarrar, Hussein Shanak e Jihad Asad. "Computational Analysis of the Morphological Aspects of Triadic Hybridized Magnetic Nanoparticles Suspended in Liquid Streamed in Coaxially Swirled Disks". Nanomaterials 12, n.º 4 (17 de fevereiro de 2022): 671. http://dx.doi.org/10.3390/nano12040671.
Texto completo da fonteYao, Yonggang, Fengjuan Chen, Anmin Nie, Steven D. Lacey, Rohit Jiji Jacob, Shaomao Xu, Zhennan Huang et al. "In Situ High Temperature Synthesis of Single-Component Metallic Nanoparticles". ACS Central Science 3, n.º 4 (13 de abril de 2017): 294–301. http://dx.doi.org/10.1021/acscentsci.6b00374.
Texto completo da fonteSönnichsen, C., S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht et al. "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy". Applied Physics Letters 77, n.º 19 (6 de novembro de 2000): 2949–51. http://dx.doi.org/10.1063/1.1323553.
Texto completo da fonteErnult, F., S. Mitani, K. Takanashi, Y. K. Takahashi e K. Hono. "Self-assembled metallic nanoparticles for spin dependent single electron tunneling". Phase Transitions 79, n.º 9-10 (setembro de 2006): 717–26. http://dx.doi.org/10.1080/01411590600961222.
Texto completo da fonteYannopapas, Vassilios. "An atomistic-electrodynamics theory for the optical response of periodic lattices of metallic nanoparticles in the quantum size regime". International Journal of Modern Physics B 31, n.º 24 (30 de setembro de 2017): 1740001. http://dx.doi.org/10.1142/s021797921740001x.
Texto completo da fonteAl-Zubeidi, Alexander, Lauren A. McCarthy, Ali Rafiei-Miandashti, Thomas S. Heiderscheit e Stephan Link. "Single-particle scattering spectroscopy: fundamentals and applications". Nanophotonics 10, n.º 6 (8 de março de 2021): 1621–55. http://dx.doi.org/10.1515/nanoph-2020-0639.
Texto completo da fonteLee, Heon, Jaegu Park, Young-Kwon Park, Byung-Joo Kim, Kay-Hyeok An, Sang-Chai Kim e Sang-Chul Jung. "Preparation and Characterization of Silver-Iron Bimetallic Nanoparticles on Activated Carbon Using Plasma in Liquid Process". Nanomaterials 11, n.º 12 (14 de dezembro de 2021): 3385. http://dx.doi.org/10.3390/nano11123385.
Texto completo da fonteLee, Hongki, Joel Berk, Aaron Webster, Donghyun Kim e Matthew R. Foreman. "Label-free detection of single nanoparticles with disordered nanoisland surface plasmon sensor". Nanotechnology 33, n.º 16 (24 de janeiro de 2022): 165502. http://dx.doi.org/10.1088/1361-6528/ac43e9.
Texto completo da fonteLi, Hongze, Zhihe Yang, Sadaf Aiman Khan, Laurence J. Walsh, Chaminda Jayampath Seneviratne e Zyta M. Ziora. "Characteristics of Metallic Nanoparticles (Especially Silver Nanoparticles) as Anti-Biofilm Agents". Antibiotics 13, n.º 9 (28 de agosto de 2024): 819. http://dx.doi.org/10.3390/antibiotics13090819.
Texto completo da fonteAuad, Yves, Cyrille Hamon, Marcel Tencé, Hugo Lourenço-Martins, Vahagn Mkhitaryan, Odile Stéphan, F. Javier García de Abajo, Luiz H. G. Tizei e Mathieu Kociak. "Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities". Nano Letters 22, n.º 1 (15 de dezembro de 2021): 319–27. http://dx.doi.org/10.1021/acs.nanolett.1c03826.
Texto completo da fonteTomchuk, Petro M., e Danylo Butenko. "Single and double ultrashort laser pulse scattering by spheroidal metallic nanoparticles". Journal of Nanophotonics 10, n.º 1 (29 de março de 2016): 016018. http://dx.doi.org/10.1117/1.jnp.10.016018.
Texto completo da fonteMamonova, Daria V., Anna A. Vasileva, Yuri V. Petrov, Alexandra V. Koroleva, Denis V. Danilov, Ilya E. Kolesnikov, Gulia I. Bikbaeva, Julien Bachmann e Alina A. Manshina. "Single Step Laser-Induced Deposition of Plasmonic Au, Ag, Pt Mono-, Bi- and Tri-Metallic Nanoparticles". Nanomaterials 12, n.º 1 (31 de dezembro de 2021): 146. http://dx.doi.org/10.3390/nano12010146.
Texto completo da fonteHamans, Ruben F., Rifat Kamarudheen e Andrea Baldi. "Single Particle Approaches to Plasmon-Driven Catalysis". Nanomaterials 10, n.º 12 (29 de novembro de 2020): 2377. http://dx.doi.org/10.3390/nano10122377.
Texto completo da fonteXue, Huan-Huan, Wen-Jin Shen, Wen-Chao Geng, Xia Yin, Yue Yang, Shaojun Guo e Yong-Jun Li. "Asymmetrical etching of Ag nanoparticles into symmetry-reduced bi-metallic nanocups at the single-nanoparticle level". Chemical Communications 54, n.º 52 (2018): 7227–30. http://dx.doi.org/10.1039/c8cc03491e.
Texto completo da fonteWeis, Martin, Katarína Gmucová, Vojtech Nádaždy, Ignác Capek, Alexander Šatka, Martin Kopáni, Július Cirák e Eva Majková. "Control of Single-Electron Charging of Metallic Nanoparticles onto Amorphous Silicon Surface". Journal of Nanoscience and Nanotechnology 8, n.º 11 (1 de novembro de 2008): 5684–89. http://dx.doi.org/10.1166/jnn.2008.214.
Texto completo da fonteVijayan, Vineeth M., Pradipika Natamai Vasudevan e Vinoy Thomas. "Polymeric Nanogels for Theranostic Applications: A Mini-Review". Current Nanoscience 16, n.º 3 (2 de abril de 2020): 392–98. http://dx.doi.org/10.2174/1573413715666190717145040.
Texto completo da fonteNAIR, A. SREEKUMARAN, RENJIS T. TOM, V. R. RAJEEV KUMAR, C. SUBRAMANIAM e T. PRADEEP. "CHEMICAL INTERACTIONS AT NOBLE METAL NANOPARTICLE SURFACES — CATALYSIS, SENSORS AND DEVICES". COSMOS 03, n.º 01 (novembro de 2007): 103–24. http://dx.doi.org/10.1142/s0219607707000244.
Texto completo da fontePark, Joohyuk, Marcel Risch, Gyutae Nam, Minjoon Park, Tae Joo Shin, Suhyeon Park, Min Gyu Kim, Yang Shao-Horn e Jaephil Cho. "Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries". Energy & Environmental Science 10, n.º 1 (2017): 129–36. http://dx.doi.org/10.1039/c6ee03046g.
Texto completo da fontePattnaik, P. K., S. K. Parida, S. R. Mishra, M. Ali Abbas e M. M. Bhatti. "Analysis of Metallic Nanoparticles (Cu, Al2O3, and SWCNTs) on Magnetohydrodynamics Water-Based Nanofluid through a Porous Medium". Journal of Mathematics 2022 (14 de fevereiro de 2022): 1–12. http://dx.doi.org/10.1155/2022/3237815.
Texto completo da fonteMovsesyan, Artur, Anne-Laure Baudrion e Pierre-Michel Adam. "Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances". Optics Express 26, n.º 5 (2 de março de 2018): 6439. http://dx.doi.org/10.1364/oe.26.006439.
Texto completo da fontePandey, Popular, Javier Garcia, Jing Guo, Xuewen Wang, Dan Yang e Jin He. "Differentiation of metallic and dielectric nanoparticles in solution by single-nanoparticle collision events at the nanoelectrode". Nanotechnology 31, n.º 1 (8 de outubro de 2019): 015503. http://dx.doi.org/10.1088/1361-6528/ab4445.
Texto completo da fontePovolotskiy, Alexey V., Oksana S. Smirnova, Diana A. Soldatova, Anastasia V. Povolotckaia e Daniil A. Lukyanov. "High-Precision Optical Excited Heaters Based on Au Nanoparticles and Water-Soluble Porphyrin". Metals 13, n.º 11 (5 de novembro de 2023): 1851. http://dx.doi.org/10.3390/met13111851.
Texto completo da fonteBanerjee, Soham, Chia-Hao Liu, Kirsten M. Ø. Jensen, Pavol Juhás, Jennifer D. Lee, Marcus Tofanelli, Christopher J. Ackerson, Christopher B. Murray e Simon J. L. Billinge. "Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data". Acta Crystallographica Section A Foundations and Advances 76, n.º 1 (1 de janeiro de 2020): 24–31. http://dx.doi.org/10.1107/s2053273319013214.
Texto completo da fonteBurkitt, Sean, Mana Mehraein, Ramunas K. Stanciauskas, Jos Campbell, Scott Fraser e Cristina Zavaleta. "Label-Free Visualization and Tracking of Gold Nanoparticles in Vasculature Using Multiphoton Luminescence". Nanomaterials 10, n.º 11 (12 de novembro de 2020): 2239. http://dx.doi.org/10.3390/nano10112239.
Texto completo da fonteByers, Chad P., Hui Zhang, Dayne F. Swearer, Mustafa Yorulmaz, Benjamin S. Hoener, Da Huang, Anneli Hoggard et al. "From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties". Science Advances 1, n.º 11 (dezembro de 2015): e1500988. http://dx.doi.org/10.1126/sciadv.1500988.
Texto completo da fonteAuad, Yves, Cyrille Hamon, Marcel Tencé, H. Lourenço-Matins, Vahagn Mkhitaryan, Odile Stéphan, F. Javier García de Abajo, Luiz H. G. Tizei e Mathieu Kociak. "Unveiling Single Particle Coupling of Metallic Nanoparticles and Whispering Gallery Mode Resonators". Microscopy and Microanalysis 28, S1 (22 de julho de 2022): 1962–64. http://dx.doi.org/10.1017/s1431927622007656.
Texto completo da fonteFeng, Yiyu, Peng Lv, Xuequan Zhang, Yu Li e Wei Feng. "Selective electroless coating of palladium nanoparticles on metallic single-walled carbon nanotube". Applied Physics Letters 97, n.º 8 (23 de agosto de 2010): 083101. http://dx.doi.org/10.1063/1.3483615.
Texto completo da fonteNarvaez, G. A., e G. Kirczenow. "Understanding Tunneling Experiments on Metallic Nanoparticles: Single-Particle versus Many-Body Phenomena". physica status solidi (b) 230, n.º 2 (abril de 2002): 457–61. http://dx.doi.org/10.1002/1521-3951(200204)230:2<457::aid-pssb457>3.0.co;2-a.
Texto completo da fonteBruix, Albert, Jeppe V. Lauritsen e Bjørk Hammer. "Effects of particle size and edge structure on the electronic structure, spectroscopic features, and chemical properties of Au(111)-supported MoS2 nanoparticles". Faraday Discussions 188 (2016): 323–43. http://dx.doi.org/10.1039/c5fd00203f.
Texto completo da fonteVakhitov, Iskander R., Nikolay M. Lyadov, Vladimir I. Vdovin, Anton K. Gutakovskii, Vladimir I. Nuzhdin, Lenar R. Tagirov e Rustam I. Khaibullin. "Ion-Beam Synthesis of Structure-Oriented Iron Nanoparticles in Single-Crystalline Rutile TiO2". Crystals 13, n.º 2 (18 de fevereiro de 2023): 355. http://dx.doi.org/10.3390/cryst13020355.
Texto completo da fonteChook, Soon Wei, Chin Hua Chia, Zakaria Sarani, Mohd Khan Ayob, Kah Leong Chee, Hui Min Neoh e Nay Ming Huang. "Silver Nanoparticles - Graphene Oxide Nanocomposite for Antibacterial Purpose". Advanced Materials Research 364 (outubro de 2011): 439–43. http://dx.doi.org/10.4028/www.scientific.net/amr.364.439.
Texto completo da fonteKonopatsky, Anton S., Vladislava V. Kalinina, Danil V. Barilyuk e Dmitri V. Shtansky. "Polyol Synthesis of Bimetallic FePt Nanoparticles over h-BN Substrate". Materials Science Forum 1128 (28 de outubro de 2024): 51–56. http://dx.doi.org/10.4028/p-jz9wev.
Texto completo da fonte