Artigos de revistas sobre o tema "Single-Electron physics"

Siga este link para ver outros tipos de publicações sobre o tema: Single-Electron physics.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Single-Electron physics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Osborne, I. S. "APPLIED PHYSICS: Single-Electron Shuttle". Science 293, n.º 5535 (31 de agosto de 2001): 1559b—1559. http://dx.doi.org/10.1126/science.293.5535.1559b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

KASTNER, M. A. "THE PHYSICS OF SINGLE ELECTRON TRANSISTORS". International Journal of High Speed Electronics and Systems 12, n.º 04 (dezembro de 2002): 1101–33. http://dx.doi.org/10.1142/s0129156402001940.

Texto completo da fonte
Resumo:
The single electron transistor (SET) is a nanometer-size device that turns on and off again every time one electron is added to it. In this article, the physics of the SET is reviewed. The consequences of confining electrons to a small region of space are that both the charge and energy are quantized. We review how the charge states and energy states of the confined electrons, sometimes called an artificial atom, are measured, and how the precision of these measurements depends on temperature. We also discuss the coupling of electrons inside the artificial atom to those in the leads of the SET, which results in the Kondo effect. We review measurements of the Kondo effect, which demonstrate that the Anderson Hamiltonian provides a quantitative description of the SET.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kastner, M. A., e D. Goldhaber-Gordon. "Kondo physics with single electron transistors". Solid State Communications 119, n.º 4-5 (julho de 2001): 245–52. http://dx.doi.org/10.1016/s0038-1098(01)00106-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kobayashi, Shun-ichi. "Fundamental Physics of Single Electron Transport". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30 de junho de 1997): 3956–59. http://dx.doi.org/10.1143/jjap.36.3956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Dempsey, Kari J., David Ciudad e Christopher H. Marrows. "Single electron spintronics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, n.º 1948 (13 de agosto de 2011): 3150–74. http://dx.doi.org/10.1098/rsta.2011.0105.

Texto completo da fonte
Resumo:
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Seneor, Pierre, Anne Bernand-Mantel e Frédéric Petroff. "Nanospintronics: when spintronics meets single electron physics". Journal of Physics: Condensed Matter 19, n.º 16 (5 de abril de 2007): 165222. http://dx.doi.org/10.1088/0953-8984/19/16/165222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Devoret, Michel H., e Christian Glattli. "Single-electron transistors". Physics World 11, n.º 9 (setembro de 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/9/26.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jamshidnezhad, K., e M. J. Sharifi. "Physics-based analytical model for ferromagnetic single electron transistor". Journal of Applied Physics 121, n.º 11 (21 de março de 2017): 113905. http://dx.doi.org/10.1063/1.4978425.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Seike, Kohei, Yasushi Kanai, Yasuhide Ohno, Kenzo Maehashi, Koichi Inoue e Kazuhiko Matsumoto. "Carbon nanotube single-electron transistors with single-electron charge storages". Japanese Journal of Applied Physics 54, n.º 6S1 (24 de abril de 2015): 06FF05. http://dx.doi.org/10.7567/jjap.54.06ff05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wu Fan e Wang Tai-Hong. "Single-electron control by single-electron pump and its stability diagrams". Acta Physica Sinica 52, n.º 3 (2003): 696. http://dx.doi.org/10.7498/aps.52.696.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ginzburg, L. P. "Single-electron Schrödinger equation for many-electron systems". Theoretical and Mathematical Physics 121, n.º 3 (dezembro de 1999): 1641–53. http://dx.doi.org/10.1007/bf02557209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Apell, P., e A. Tagliacozzo. "Single Electron Tunneling". physica status solidi (b) 145, n.º 2 (1 de fevereiro de 1988): 483–91. http://dx.doi.org/10.1002/pssb.2221450213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Gurvitz, Shmuel. "Single-electron approach for time-dependent electron transport". Physica Scripta T165 (1 de outubro de 2015): 014013. http://dx.doi.org/10.1088/0031-8949/2015/t165/014013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Nagase, Masao, Seiji Horiguchi, Akira Fujiwara e Yasuo Takahashi. "Microscopic Observations of Single-Electron Island in Si Single-Electron Transistors". Japanese Journal of Applied Physics 42, Part 1, No. 4B (30 de abril de 2003): 2438–43. http://dx.doi.org/10.1143/jjap.42.2438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Monreal, Benjamin. "Single-electron cyclotron radiation". Physics Today 69, n.º 1 (janeiro de 2016): 70–71. http://dx.doi.org/10.1063/pt.3.3060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ji, Xiao-Fan, Zheng Xu, Shuo Cao, Kang-Sheng Qiu, Jing Tang, Xi-Tian Zhang e Xiu-Lai Xu. "Single-ZnO-Nanobelt-Based Single-Electron Transistors". Chinese Physics Letters 31, n.º 6 (junho de 2014): 067303. http://dx.doi.org/10.1088/0256-307x/31/6/067303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Yano, Kazuo, e David K. Ferry. "Single-electron solitons". Superlattices and Microstructures 11, n.º 1 (janeiro de 1992): 61–64. http://dx.doi.org/10.1016/0749-6036(92)90362-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

AKAMINE, Yuta, Kazuto FUJIWARA, Bokulae CHO e Chuhei OSHIMA. "New Phenomena in Physics Related with Single-Atom Electron Sources". Journal of the Vacuum Society of Japan 55, n.º 2 (2012): 59–63. http://dx.doi.org/10.3131/jvsj2.55.59.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Wingreen, N. S. "PHYSICS: Quantum Many-Body Effects in a Single-Electron Transistor". Science 304, n.º 5675 (28 de maio de 2004): 1258–59. http://dx.doi.org/10.1126/science.1098302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Nordlander, Peter, Ned S. Wingreen, Yigal Meir e David C. Langreth. "Kondo physics in the single-electron transistor with ac driving". Physical Review B 61, n.º 3 (15 de janeiro de 2000): 2146–50. http://dx.doi.org/10.1103/physrevb.61.2146.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Tanttu, Tuomo, Alessandro Rossi, Kuan Yen Tan, Kukka-Emilia Huhtinen, Kok Wai Chan, Mikko Möttönen e Andrew S. Dzurak. "Electron counting in a silicon single-electron pump". New Journal of Physics 17, n.º 10 (16 de outubro de 2015): 103030. http://dx.doi.org/10.1088/1367-2630/17/10/103030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kauppinen, J. P., e J. P. Pekola. "Hot electron effects in metallic single electron components". Czechoslovak Journal of Physics 46, S4 (abril de 1996): 2295–96. http://dx.doi.org/10.1007/bf02571139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara e Hiroshi Inokawa. "Silicon single-electron devices". Journal of Physics: Condensed Matter 14, n.º 39 (20 de setembro de 2002): R995—R1033. http://dx.doi.org/10.1088/0953-8984/14/39/201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kim, Sang Jin, Yukinori Ono, Yasuo Takahashi e Jung Bum Choi. "Real-Time Observation of Single-Electron Movement through Silicon Single-Electron Transistor". Japanese Journal of Applied Physics 43, n.º 10 (8 de outubro de 2004): 6863–67. http://dx.doi.org/10.1143/jjap.43.6863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Boese, D., e H. Schoeller. "Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor". Europhysics Letters (EPL) 54, n.º 5 (junho de 2001): 668–74. http://dx.doi.org/10.1209/epl/i2001-00367-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Sui Bing-Cai, Fang Liang e Zhang Chao. "Conductance of single-electron transistor with single island". Acta Physica Sinica 60, n.º 7 (2011): 077302. http://dx.doi.org/10.7498/aps.60.077302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Wang, Y., D. MacKernan, D. Cubero, D. F. Coker e N. Quirke. "Single electron states in polyethylene". Journal of Chemical Physics 140, n.º 15 (21 de abril de 2014): 154902. http://dx.doi.org/10.1063/1.4869831.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Matsutani, Masahiro, Fujio Wakaya, Sadao Takaoka, Kazuo Murase e Kenji Gamo. "Electron-Beam-Induced Oxidation for Single-Electron Devices". Japanese Journal of Applied Physics 36, Part 1, No. 12B (30 de dezembro de 1997): 7782–85. http://dx.doi.org/10.1143/jjap.36.7782.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Nishiguchi, Norihiko. "Electron transport properties of C60 single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, n.º 1-3 (maio de 2003): 247–48. http://dx.doi.org/10.1016/s1386-9477(02)01000-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ciccarello, F., G. M. Palma, M. Zarcone, Y. Omar e V. R. Vieira. "Entanglement controlled single-electron transmittivity". New Journal of Physics 8, n.º 9 (27 de setembro de 2006): 214. http://dx.doi.org/10.1088/1367-2630/8/9/214.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Dasenbrook, David, Joseph Bowles, Jonatan Bohr Brask, Patrick P. Hofer, Christian Flindt e Nicolas Brunner. "Single-electron entanglement and nonlocality". New Journal of Physics 18, n.º 4 (26 de abril de 2016): 043036. http://dx.doi.org/10.1088/1367-2630/18/4/043036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Bushev, P. A., J. H. Cole, D. Sholokhov, N. Kukharchyk e M. Zych. "Single electron relativistic clock interferometer". New Journal of Physics 18, n.º 9 (27 de setembro de 2016): 093050. http://dx.doi.org/10.1088/1367-2630/18/9/093050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Dubas, L. G. "Single-component relativistic electron flux". Technical Physics Letters 32, n.º 6 (junho de 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Jeong, Moon-Young, Yoon-Ha Jeong, Sung-Woo Hwang e Dae M. Kim. "Performance of Single-Electron Transistor Logic Composed of Multi-gate Single-Electron Transistors". Japanese Journal of Applied Physics 36, Part 1, No. 11 (15 de novembro de 1997): 6706–10. http://dx.doi.org/10.1143/jjap.36.6706.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chen, Wei. "Fabrication and physics of 2 nm islands for single electron devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, n.º 6 (novembro de 1995): 2883. http://dx.doi.org/10.1116/1.588310.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jia, Zhaosai, Hailong Wang, Chuanhe Ma, Xin Cao e Qian Gong. "Electron–electron scattering rate in CdTe/CdMnTe single quantum well". International Journal of Modern Physics B 35, n.º 21 (31 de julho de 2021): 2150221. http://dx.doi.org/10.1142/s0217979221502210.

Texto completo da fonte
Resumo:
CdMnTe is demonstrated to be a good candidate in the X-ray and [Formula: see text]-ray detector application, however, there are few reports on theoretical analysis of electron scattering rate in CdMnTe quantum well. Within the framework of effective mass approximation and envelope function approximation, the influence of the Mn alloy composition ([Formula: see text], the well width ([Formula: see text], the electron temperature ([Formula: see text] and the electron density ([Formula: see text] on the electron–electron scattering rate (1/[Formula: see text] in the CdTe/Cd[Formula: see text]Mn[Formula: see text]Te single quantum well (SQW), are simulated by shooting method and Fermi’s Golden Rule. The results show that 1/[Formula: see text] is significant inverse proportional to [Formula: see text], but positively proportional to [Formula: see text] and [Formula: see text]. Except for a small peak at 20 K, 1/[Formula: see text] is not sensitive to [Formula: see text]. The above differential dependency of 1/[Formula: see text] on [Formula: see text] and [Formula: see text] can be interpreted by sub-band separation ([Formula: see text], which is proportional to [Formula: see text] but inversely proportional to [Formula: see text]. When [Formula: see text] decreases gradually, the electron transition becomes easier, which leads to 1/[Formula: see text] increases. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by kinetic energy of electrons. The larger the electron kinetic energy is, the more difficult the electron transition from first excited state to ground state is, which leads to 1/[Formula: see text] decreasing. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by the Coulomb interaction between electrons, i.e., the increase of electron collision probability caused by the increase of [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Thelander, Claes, Henrik A. Nilsson, Linus E. Jensen e Lars Samuelson. "Nanowire Single-Electron Memory". Nano Letters 5, n.º 4 (abril de 2005): 635–38. http://dx.doi.org/10.1021/nl050006s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Rafiq, M. A., Z. A. K. Durrani, H. Mizuta, A. Colli, P. Servati, A. C. Ferrari, W. I. Milne e S. Oda. "Room temperature single electron charging in single silicon nanochains". Journal of Applied Physics 103, n.º 5 (março de 2008): 053705. http://dx.doi.org/10.1063/1.2887988.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hasko, D. G., T. Ferrus, Q. R. Morrissey, S. R. Burge, E. J. Freeman, M. J. French, A. Lam et al. "Single shot measurement of a silicon single electron transistor". Applied Physics Letters 93, n.º 19 (10 de novembro de 2008): 192116. http://dx.doi.org/10.1063/1.3028344.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Kubatkin, Sergey, Andrey Danilov, Mattias Hjort, Jérôme Cornil, Jean-Luc Brédas, Nicolai Stuhr-Hansen, Per Hedegård e Thomas Bjørnholm. "Single electron transistor with a single conjugated molecule". Current Applied Physics 4, n.º 5 (agosto de 2004): 554–58. http://dx.doi.org/10.1016/j.cap.2004.01.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Matheoud, Alessandro V., Nergiz Sahin e Giovanni Boero. "A single chip electron spin resonance detector based on a single high electron mobility transistor". Journal of Magnetic Resonance 294 (setembro de 2018): 59–70. http://dx.doi.org/10.1016/j.jmr.2018.07.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hwang, Sung Woo, Toshitsugu Sakamoto e Kazuo Nakamura. "Single Electron Digital Phase Modulator". Japanese Journal of Applied Physics 34, Part 1, No. 1 (15 de janeiro de 1995): 83–84. http://dx.doi.org/10.1143/jjap.34.83.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Akazawa, Masamichi, e Yoshihito Amemiya. "Directional Single-Electron-Tunneling Junction". Japanese Journal of Applied Physics 35, Part 1, No. 6A (15 de junho de 1996): 3569–75. http://dx.doi.org/10.1143/jjap.35.3569.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kirihara, Masaharu, e Kenji Taniguchi. "A Single Electron Neuron Device". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30 de junho de 1997): 4172–75. http://dx.doi.org/10.1143/jjap.36.4172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

von Borczyskowski, C., J. Köhler, W. E. Moerner, M. Orrit e J. Wrachtrup. "Single-molecule electron spin resonance". Applied Magnetic Resonance 31, n.º 3-4 (setembro de 2007): 665–76. http://dx.doi.org/10.1007/bf03166609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

So, Hye-Mi, Jinhee Kim, Wan Soo Yun, Jong Wan Park, Ju-Jin Kim, Do-Jae Won, Yongku Kang e Changjin Lee. "Molecule-based single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, n.º 1-3 (maio de 2003): 243–44. http://dx.doi.org/10.1016/s1386-9477(02)00996-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Abramov, I. I., e E. G. Novik. "Classification of single-electron devices". Semiconductors 33, n.º 11 (novembro de 1999): 1254–59. http://dx.doi.org/10.1134/1.1187860.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Yu, Yun Seop, Seung Hun Son, Hee Tae Kim, Yong Gyu Kim, Jung Hyun Oh, Hanjung Kim, Sung Woo Hwang, Bum Ho Choi e Doyeol Ahn. "Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron Transistor". Japanese Journal of Applied Physics 46, n.º 4B (24 de abril de 2007): 2592–95. http://dx.doi.org/10.1143/jjap.46.2592.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Fernández-Rossier, J., R. Aguado e L. Brey. "Anisotropic magnetoresistance in single electron transport". physica status solidi (c) 3, n.º 12 (dezembro de 2006): 4231–34. http://dx.doi.org/10.1002/pssc.200672837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Speirs, Rory W., Corey T. Putkunz, Andrew J. McCulloch, Keith A. Nugent, Benjamin M. Sparkes e Robert E. Scholten. "Single-shot electron diffraction using a cold atom electron source". Journal of Physics B: Atomic, Molecular and Optical Physics 48, n.º 21 (23 de setembro de 2015): 214002. http://dx.doi.org/10.1088/0953-4075/48/21/214002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia