Siga este link para ver outros tipos de publicações sobre o tema: Single-dot spectroscopy.

Artigos de revistas sobre o tema "Single-dot spectroscopy"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Single-dot spectroscopy".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Surowiecka, K., A. Wysmołek, R. Stępniewski, R. Bożek, K. Pakuła, and J. M. Baranowski. "Single GaN/AlGaN Quantum Dot Spectroscopy." Acta Physica Polonica A 112, no. 2 (2007): 233–36. http://dx.doi.org/10.12693/aphyspola.112.233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bonadeo, N. H., Gang Chen, D. Gammon, and D. G. Steel. "Single Quantum Dot Nonlinear Optical Spectroscopy." physica status solidi (b) 221, no. 1 (2000): 5–18. http://dx.doi.org/10.1002/1521-3951(200009)221:1<5::aid-pssb5>3.0.co;2-h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Babinski, Adam, S. Awirothananon, J. Lapointe, Z. Wasilewski, S. Raymond, and M. Potemski. "Single-dot spectroscopy in high magnetic fields." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (2005): 190–93. http://dx.doi.org/10.1016/j.physe.2004.08.050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Weis, J., R. J. Haug, K. von Klitzing, and K. Ploog. "Transport spectroscopy on a single quantum dot." Semiconductor Science and Technology 9, no. 11S (1994): 1890–96. http://dx.doi.org/10.1088/0268-1242/9/11s/006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Dias, Eva A., Amy F. Grimes, Douglas S. English, and Patanjali Kambhampati. "Single Dot Spectroscopy of Two-Color Quantum Dot/Quantum Shell Nanostructures." Journal of Physical Chemistry C 112, no. 37 (2008): 14229–32. http://dx.doi.org/10.1021/jp806621q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

H kanson, Ulf, Jonas Persson, Filip Persson, Hans Svensson, Lars Montelius, and Mikael K.-J. Johansson. "Nano-aperture fabrication for single quantum dot spectroscopy." Nanotechnology 14, no. 6 (2003): 675–79. http://dx.doi.org/10.1088/0957-4484/14/6/321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Park, D. "Small aperture fabrication for single quantum dot spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 6 (1998): 3891. http://dx.doi.org/10.1116/1.590429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bockelmann, U., Ph Roussignol, A. Filoramo, W. Heller, and G. Abstreiter. "Time resolved spectroscopy of single quantum dot structures." Solid-State Electronics 40, no. 1-8 (1996): 541–44. http://dx.doi.org/10.1016/0038-1101(95)00286-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gerardot, B. D., S. Seidl, P. A. Dalgarno, et al. "Contrast in transmission spectroscopy of a single quantum dot." Applied Physics Letters 90, no. 22 (2007): 221106. http://dx.doi.org/10.1063/1.2743750.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Multiexciton Spectroscopy of a Single Self-Assembled Quantum Dot." Physical Review Letters 80, no. 22 (1998): 4991–94. http://dx.doi.org/10.1103/physrevlett.80.4991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

de Vasconcellos, S. Michaelis, A. Pawlis, C. Arens, et al. "Exciton spectroscopy on single CdSe/ZnSe quantum dot photodiodes." Microelectronics Journal 40, no. 2 (2009): 215–17. http://dx.doi.org/10.1016/j.mejo.2008.07.055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Haug, R. J., R. H. Blick, and T. Schmidt. "Transport spectroscopy of single and coupled quantum-dot systems." Physica B: Condensed Matter 212, no. 3 (1995): 207–12. http://dx.doi.org/10.1016/0921-4526(95)00033-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bonadeo, N. H., A. S. Lenihan, Gang Chen, et al. "Single quantum dot states measured by optical modulation spectroscopy." Applied Physics Letters 75, no. 19 (1999): 2933–35. http://dx.doi.org/10.1063/1.125177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Optical spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (1998): 694–700. http://dx.doi.org/10.1016/s1386-9477(98)00142-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Seidl, S., A. Högele, M. Kroner, et al. "Modulation spectroscopy on a single self assembled quantum dot." physica status solidi (a) 204, no. 2 (2007): 381–89. http://dx.doi.org/10.1002/pssa.200673956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ester, Patrick, Stefan Stufler, Steffen Michaelis de Vasconcellos, Max Bichler, and Artur Zrenner. "High resolution photocurrent-spectroscopy of a single quantum dot." physica status solidi (c) 3, no. 11 (2006): 3722–25. http://dx.doi.org/10.1002/pssc.200671572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Mintairov, Alexander, Yan Tang, James Merz, Vadim Tokranov, and Serge Oktyabrsky. "Single dot near-field spectroscopy for photonic crystal microcavities." physica status solidi (c) 2, no. 2 (2005): 845–49. http://dx.doi.org/10.1002/pssc.200460326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Dialynas, G. E., N. Chatzidimitriou, S. Kalliakos, et al. "Single dot spectroscopy on InAs/GaAs piezoelectric quantum dots." physica status solidi (a) 205, no. 11 (2008): 2566–68. http://dx.doi.org/10.1002/pssa.200780190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Li, Bin, Guo-Feng Zhang, Rui-Yun Chen, et al. "Research progress of single quantum-dot spectroscopy and exciton dynamics." Acta Physica Sinica 71, no. 6 (2022): 067802. http://dx.doi.org/10.7498/aps.71.20212050.

Texto completo da fonte
Resumo:
Colloidal semiconductor quantum dots (QDs) have strong light absorption, continuously adjustable narrowband emission, and high photoluminescence quantum yields, thereby making them promising materials for light-emitting diodes, solar cells, detectors, and lasers. Single-QD photoluminescence spectroscopy can remove the ensemble average to reveal the structure information and exciton dynamics of QD materials at a single-particle level. The study of single-QD spectroscopy can provide guidelines for rationally designing the QDs and giving the mechanism basis for QD-based applications. We can also carry out the research of the interaction between light and single QDs on a nanoscale, and prepare QD-based single-photon sources and entangled photon sources. Here, we review the recent research progress of single-QD photoluminescence spectroscopy and exciton dynamics, mainly including photoluminescence blinking dynamics, and exciton and multi-exciton dynamics of single colloidal CdSe-based QDs and perovskite QDs. Finally, we briefly discuss the possible future development trends of single-QD spectroscopy and exciton dynamics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Yamanishi, Junsuke, Hidemasa Yamane, Yoshitaka Naitoh, Yan Jun Li, and Yasuhiro Sugawara. "Local spectroscopic imaging of a single quantum dot in photoinduced force microscopy." Applied Physics Letters 120, no. 16 (2022): 161601. http://dx.doi.org/10.1063/5.0088634.

Texto completo da fonte
Resumo:
Analysis of environmentally sensitive materials is essential for developing and optimizing nanostructured photochemical materials and devices. Photoinduced force microscopy (PiFM) is a promising local spectroscopic technique to visualize nanoscale local optical responses by measuring the optical forces between the scanning tip and sample. In this study, we examined isolated single quantum dots (QDs) with ligands on a gold substrate via PiFM under ultra-high vacuum to characterize the QD adsorption state on the basis of the optical force. The strong self-consistent optical interaction through the tip-substrate plasmonic gap induced by laser light modulates the PiFM image depending on QD crystal existence in the gap. This observation clarified the QD absorption situation on the substrate, and the crystal position in the QDs was determined even though the ligand walls covered the crystal. This insight concerning force spectroscopy can aid further research on the photochemistry of nanostructured materials and molecular spectroscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Layek, Arunasish, Vikas Arora, Sameer Sapra, and Arindam Chowdhury. "Unraveling the dual emission of single quantum-dot by single particle spectroscopy." Journal of Physics: Conference Series 2349, no. 1 (2022): 012026. http://dx.doi.org/10.1088/1742-6596/2349/1/012026.

Texto completo da fonte
Resumo:
Two-color emissive 0D–2D quantum-dot quantum-well (QD-QW) heteronanocrystals has created profound research activities. First multicolor emission in the visible region has been reported by Peng and co-workers in CdSe(core)–ZnS(barrier)-CdSe(shell) (core-barrier-shell) based heteronanostructures where the both CdSe phases (core and the shell) are emissive and tuneable as well. Owing to this enhanced and tuneable functionality, the QD-QW systems colloidal nanocrystals has fuelled their optical and imaging applications. Single particle spectroscopy has taken a giant step toward unravelling the features of individual particles and thus to provide direct information on their heterogeneity. To elucidate the dual emission characteristic of individual nanocrystals we performed energy mapped photoluminescence imaging. Surprisingly, the pseudo color PL intensity image shows that not all single particles are dual emissive in nature, few are either green emitting or red emitting. Photoluminescence spectrum of individual nanocrystals further confirms that individual nanocrystals can be dual emissive in nature. However, single color emissive dots are also present indicating the ensemble heterogeneity at single particle levels. The temporal evolution PL spectra of a single quantum shows spectral diffusion. The single dot experiments on the dual emissive QD-QW system unravels hidden photophysics which are otherwise not observed by ensemble spectroscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ates, S., S. M. Ulrich, A. Ulhaq, et al. "Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy." Nature Photonics 3, no. 12 (2009): 724–28. http://dx.doi.org/10.1038/nphoton.2009.215.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Xu, C. Shan, Hahkjoon Kim, Haw Yang, and Carl C. Hayden. "Multiparameter Fluorescence Spectroscopy of Single Quantum Dot−Dye FRET Hybrids." Journal of the American Chemical Society 129, no. 36 (2007): 11008–9. http://dx.doi.org/10.1021/ja074279w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Batteh, E. T., Jun Cheng, Gang Chen, et al. "Coherent nonlinear optical spectroscopy of single quantum dot excited states." Applied Physics Letters 84, no. 11 (2004): 1928–30. http://dx.doi.org/10.1063/1.1667280.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Koberling, Felix, Alf Mews, and Thomas Basché. "Single-dot spectroscopy of CdS nanocrystals and CdS/HgS heterostructures." Physical Review B 60, no. 3 (1999): 1921–27. http://dx.doi.org/10.1103/physrevb.60.1921.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Sychugov, Ilya, Robert Juhasz, Augustinas Galeckas, Jan Valenta, and Jan Linnros. "Single dot optical spectroscopy of silicon nanocrystals: low temperature measurements." Optical Materials 27, no. 5 (2005): 973–76. http://dx.doi.org/10.1016/j.optmat.2004.08.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Podemski, Paweł, Aleksander Maryński, Paweł Wyborski, Artem Bercha, Witold Trzeciakowski, and Grzegorz Sęk. "Single dot photoluminescence excitation spectroscopy in the telecommunication spectral range." Journal of Luminescence 212 (August 2019): 300–305. http://dx.doi.org/10.1016/j.jlumin.2019.04.058.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wolpert, Christian, Christian Dicken, Lijuan Wang, et al. "Ultrafast coherent spectroscopy of a single self-assembled quantum dot." physica status solidi (b) 249, no. 4 (2012): 721–30. http://dx.doi.org/10.1002/pssb.201100776.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Fu, Ming, Lihua Qian, Hua Long, et al. "Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy." Nanoscale 6, no. 15 (2014): 9192–97. http://dx.doi.org/10.1039/c4nr01497a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Vanmaekelbergh, Daniel, and Marianna Casavola. "Single-Dot Microscopy and Spectroscopy for Comprehensive Study of Colloidal Nanocrystals." Journal of Physical Chemistry Letters 2, no. 16 (2011): 2024–31. http://dx.doi.org/10.1021/jz200713j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Schmidt, T., R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth. "Spectroscopy of the Single-Particle States of a Quantum-Dot Molecule." Physical Review Letters 78, no. 8 (1997): 1544–47. http://dx.doi.org/10.1103/physrevlett.78.1544.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kanno, Takashi, Hiroshi Sugimoto, Anna Fucikova, Jan Valenta, and Minoru Fujii. "Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots." Journal of Applied Physics 120, no. 16 (2016): 164307. http://dx.doi.org/10.1063/1.4965986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Toda, Y., and Y. Arakawa. "Near-field spectroscopy of a single InGaAs self-assembled quantum dot." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 3 (2000): 528–33. http://dx.doi.org/10.1109/2944.865108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Takemoto, Kazuya, Yoshiki Sakuma, Shinichi Hirose та ін. "Single InAs/InP quantum dot spectroscopy in 1.3–1.55μm telecommunication band". Physica E: Low-dimensional Systems and Nanostructures 26, № 1-4 (2005): 185–89. http://dx.doi.org/10.1016/j.physe.2004.08.049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Sugisaki, Mitsuru, Hong-Wen Ren, Selvakumar V. Nair, et al. "Imaging and single dot spectroscopy of InP self-assembled quantum dots." Journal of Luminescence 87-89 (May 2000): 40–45. http://dx.doi.org/10.1016/s0022-2313(99)00213-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Kroner, M., S. Rémi, A. Högele, et al. "Resonant saturation laser spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 40, no. 6 (2008): 1994–96. http://dx.doi.org/10.1016/j.physe.2007.09.150.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Pistol, M. E., P. Castrillo, D. Hessman, et al. "Band-filling in InP dots: Single dot spectroscopy and carrier dynamics." Solid-State Electronics 40, no. 1-8 (1996): 357–61. http://dx.doi.org/10.1016/0038-1101(95)00328-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Shtrichman, I., C. Metzner, B. D. Gerardot, W. V. Schoenfeld, and P. M. Petroff. "Optical spectroscopy of single quantum dot molecules under applied electric field." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 119–22. http://dx.doi.org/10.1016/s1386-9477(01)00500-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Beham, Evelin, Artur Zrenner, Frank Findeis, Max Bichler, and Gerhard Abstreiter. "Level bleaching in a single quantum dot observed by photocurrent spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 139–42. http://dx.doi.org/10.1016/s1386-9477(01)00505-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Berkovits, R., M. Abraham, and Y. Avishai. "AC conductance of an interacting quantum dot: single-electron-level spectroscopy." Journal of Physics: Condensed Matter 5, no. 13 (1993): L175—L182. http://dx.doi.org/10.1088/0953-8984/5/13/005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Wolpert, Christian, Lijuan Wang, Armando Rastelli, Oliver G. Schmidt, Harald Giessen, and Markus Lippitz. "Transient absorption spectroscopy of a single lateral InGaAs quantum dot molecule." physica status solidi (b) 249, no. 4 (2012): 731–36. http://dx.doi.org/10.1002/pssb.201100783.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Heldmaier, Matthias, Claus Hermannstädter, Marcus Witzany, et al. "Growth and spectroscopy of single lateral InGaAs/GaAs quantum dot molecules." physica status solidi (b) 249, no. 4 (2012): 710–20. http://dx.doi.org/10.1002/pssb.201100800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Srinivasan, Kartik, Oskar Painter, Andreas Stintz, and Sanjay Krishna. "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic." Applied Physics Letters 91, no. 9 (2007): 091102. http://dx.doi.org/10.1063/1.2775811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Filikhin, I., E. Deyneka, and B. Vlahovic. "Single-electron levels of InAs/GaAs quantum dot: Comparison with capacitance spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 31, no. 1 (2006): 99–102. http://dx.doi.org/10.1016/j.physe.2005.10.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Sato, Tomohiko, Toshihiko Nakaoka, Makoto Kudo, and Yasuhiko Arakawa. "Magneto-optical single dot spectroscopy of GaSb/GaAs type II quantum dots." Physica E: Low-dimensional Systems and Nanostructures 32, no. 1-2 (2006): 152–54. http://dx.doi.org/10.1016/j.physe.2005.12.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Li, J. J., and K. D. Zhu. "Coherent optical spectroscopy due to lattice vibrations in a single quantum dot." European Physical Journal D 59, no. 2 (2010): 305–8. http://dx.doi.org/10.1140/epjd/e2010-00157-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Makino, T., R. André, J. M. Gérard, et al. "Single quantum dot spectroscopy of CdSe/ZnSe grown on vicinal GaAs substrates." Applied Physics Letters 82, no. 14 (2003): 2227–29. http://dx.doi.org/10.1063/1.1565700.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Valenta, Jan, Anna Fucikova, František Vácha, et al. "Light-Emission Performance of Silicon Nanocrystals Deduced from Single Quantum Dot Spectroscopy." Advanced Functional Materials 18, no. 18 (2008): 2666–72. http://dx.doi.org/10.1002/adfm.200800397.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Chen, Zhanghai, L. H. Bai, S. H. Huang, et al. "SPIN-RESOLVED MAGNETO-OPTICAL STUDY OF CdSe SINGLE QUANTUM DOT." International Journal of Modern Physics B 21, no. 08n09 (2007): 1549–54. http://dx.doi.org/10.1142/s0217979207043178.

Texto completo da fonte
Resumo:
We report on the magneto-optical study of spin polarized energetic fine structures for exciton complex in single CdSe quantum dot (QD) by using micro- photoluminescence (micro-PL) spectroscopy. The zero-field splitting of exciton luminescence peak arisen from the anisotropic exchange interaction of carriers in the QDs was observed. The g-factors for exciton and negatively-charged exciton, i.e. trion in a single QD were determined by fitting the magnetic field dependence of the corresponding PL peaks. By exciting the single QD with circularly polarized light of σ- and σ+ polarization, the spin-up and spin-down trions were selectively generated. The ratio, τ/τsf, of the exciton lifetime and the time constants for the spin-flipping process of trion in a single QD was estimated to be 0.13, which implies a long spin-lifetime in single CdSe QD.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kim, Erik D., Katherine Truex, Yanwen Wu, et al. "Picosecond optical spectroscopy of a single negatively charged self-assembled InAs quantum dot." Applied Physics Letters 97, no. 11 (2010): 113110. http://dx.doi.org/10.1063/1.3487783.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia