Literatura científica selecionada sobre o tema "Simulations STM"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Simulations STM".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Simulations STM"
Wilson, J. H., D. A. McInnes, J. Knall, A. P. Sutton e J. B. Pethica. "Quantitative voltage-dependent STM image simulations for semiconductors". Ultramicroscopy 42-44 (julho de 1992): 801–8. http://dx.doi.org/10.1016/0304-3991(92)90361-m.
Texto completo da fonteBocquet, Marie-Laure, e Bin Wang. "Metal–organic interaction probed by First Principles STM simulations". Progress in Surface Science 85, n.º 9-12 (setembro de 2010): 435–59. http://dx.doi.org/10.1016/j.progsurf.2010.09.001.
Texto completo da fonteTremblay, Jean Christophe, e María Blanco-Rey. "Manipulating interfacial hydrogens at palladium via STM". Physical Chemistry Chemical Physics 17, n.º 21 (2015): 13973–83. http://dx.doi.org/10.1039/c5cp00663e.
Texto completo da fonteZhang, Rui, Liang Li, Laszlo Frazer, Kelvin B. Chang, Kenneth R. Poeppelmeier, Maria K. Y. Chan e Jeffrey R. Guest. "Atomistic determination of the surface structure of Cu2O(111): experiment and theory". Physical Chemistry Chemical Physics 20, n.º 43 (2018): 27456–63. http://dx.doi.org/10.1039/c8cp06023a.
Texto completo da fonteNakagiri, Nobuyuki, e Hiroshi Kaizuka. "Simulations of STM Images and Work Function for Rough Surfaces". Japanese Journal of Applied Physics 29, Part 1, No. 4 (20 de abril de 1990): 744–49. http://dx.doi.org/10.1143/jjap.29.744.
Texto completo da fonteRochefort, Alain, Stéphane Bedwani e Alejandro Lopez-Bezanilla. "Evidence for π-Interactions in Stacked Polymers by STM Simulations". Journal of Physical Chemistry C 115, n.º 38 (setembro de 2011): 18625–33. http://dx.doi.org/10.1021/jp204832q.
Texto completo da fonteMagoga, Michaël, Fabien Archambault e Jorge I. Cerdá. "Nt_STM: A step forward in Scanning Tunneling Microscopy (STM) simulations". Computer Physics Communications 183, n.º 6 (junho de 2012): 1246–49. http://dx.doi.org/10.1016/j.cpc.2012.02.003.
Texto completo da fonteRubio-Verdú, C., G. Sáenz-Arce, J. Martinez-Asencio, D. C. Milan, M. Moaied, J. J. Palacios, M. J. Caturla e C. Untiedt. "Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip". Physical Chemistry Chemical Physics 19, n.º 11 (2017): 8061–68. http://dx.doi.org/10.1039/c6cp07236d.
Texto completo da fonteLI QUN-XIANG, YANG JIN-LONG, HOU JIAN-GUO, WANG KE-LIN e ZHU QING-SHI. "THEORETICAL SIMULATIONS OF STM IMAGES FOR C60 WITH DIFFERENT ADSORBED ORIENTATIONS". Acta Physica Sinica 48, n.º 8 (1999): 1477. http://dx.doi.org/10.7498/aps.48.1477.
Texto completo da fonteMáca, F., W. A. Hofer e J. Redinger. "Ab initio simulations and STM-images for Co/Pt(110) surfaces". Surface Science 482-485 (junho de 2001): 844–49. http://dx.doi.org/10.1016/s0039-6028(01)00741-5.
Texto completo da fonteTeses / dissertações sobre o assunto "Simulations STM"
Lesnard, Hervé. "Structure électronique de molécules aromatiques sur une surface sondée par STM : apports récents des simulations". Lyon, École normale supérieure (sciences), 2009. http://www.theses.fr/2009ENSL0553.
Texto completo da fonteThe subject of my theoretical work deals with the capabilities of the STM tool to induce two types of local excitations, either vibrational or electronic on single adsorbed aromatic molecules on surfaces. Concerning vibrational excitations, the changes in tunneling conductance at vibrational thresholds have recently been used as an Inelastic Electron Tunneling Spectroscopy (IETS). We study the STM-induced dehydrogenation of benzene on Cu(100), where the reaction products could be either phenyl or benzyne fragments (group of W. Ho, Irvine). We demonstrate that they are solely identified with their theoretical IETS fingerprints being in quantitative agreement with the IETS measurements. We similarly investigate the dehydrogenation of pyridine and show that one heteroatom in the aromatic ring affects the magnitude of the IETS signatures. Conversely, we rationalize our findings in terms of inelastic propensity rules that couple the symmetry of the electronic scattering states and the molecular vibrators. In a second part, we study the electron-induced reactions of individual biphenyl molecules on a Si(100) surface, which have been investigated by using the tip of the STM as an atomic size source of electrons (group of G. Dujardin, Orsay). Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. We determine all possible reaction pathways on the silicon surface, providing evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies
Vu, Van Binh. "Theoretical studies of novel graphene based nanostructures". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP039.
Texto completo da fonteSince its discovery, graphene has become a focal point of extensive research and interest because of its exceptional mechanical, thermal, and electrical characteristics. Nevertheless, the absence of a bandgap in graphene constitutes a barrier to applications in optics, nanoelectronics, and spintronics. Bandgap engineering involving the nanostructuration of graphene has been developed over the years, such as by quantum confinement, to overcome this limitation. This theoretical work is dedicated to the change of electronic, optical, and scanning tunneling microscopy/spectroscopy (STM/STS) responses as a function of system size of new carbon materials like graphene nanomeshes (GNMs), shape/size controlled graphene quantum dots (GQDs) and graphene nanoribbons (GNRs), in order to compare and analyze experimental data. These new carbon materials are theoretically deposited on gold Au(111) surfaces in STM simulation performed using the Non-equilibrium Green's function (NEGF) formalism based on the Fireball DFT method to support the experimental data. Concerning GQDs, we simulate their absorption spectrum using the GW approximation and the Bethe-Salpeter equations (BSE), if possible, to compare directly with the experiment data. Otherwise, their optical properties are achieved by a lower approach, the Tight-Binding (TB) approach. Also, the impacts of aggregations and impurities on their optical responses are explored by studying the twisted bilayer of the GQDs via the TB method. Moreover, the changes in these new carbon materials' electronic properties as a function of their system size are extracted using the TB method. The performance of the TB method is verified by DFT and GW simulations. Finally, other low-dimensional materials, new close-to 30° twisted hexagonal boron nitride bilayer structures (hBN-TBLs), are also studied in this thesis. DFT and TB methods perform the electronic and optical structures of further 30° hBN-TBLs to obtain the fit parameters for the TB model. These parameters are then used to predict closer to 30° hBN-TBLs, which are hardly to be obtained by DFT
Parditka, Bence. "Investigation of diffusion and solid state reactions on the nanoscale in silicon based systems of high industrial potential : experiments and simulations". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4348/document.
Texto completo da fonteDiffusion and related solid state reaction phenomena have been studied in four different material couples. The first section of the results concerned the diffusion related stress effects. We analyzed the question theoretically, for planar model geometry, to find the role of stress in diffusion. We obtained that stress effects do not have any measurable effects on the kinetic coefficient of the interface shift. However, the intermixing rate decreases. The second section we performed EXAFS and GIXRF experiments on sandwich structured Ta/a- Si/Ni/a-Si/Ta/substrate samples and followed the phase formation and growth at a given temperature at which the Ni2Si phase has formed and continued to grow. The third section we obtained in the Cu-Si system. We followed the early stages of phase formation of the Cu3Si phase under different circumstances. We performed XRD, APT, SNMS, profilometer and 4 wire resistance measurements on sputtering deposited samples. We found that in case of the Cu/a-Si/substrate samples the phase formation was followed by a linear kinetics. Secondly, prior to the linear phase growth, we observed an extremely fast phase formation that appeared immediately after the very first and shortest annealing, which showed that the preparation sequence of the sample is a crucial point in phase formation processes. The fourth section deals with the silicene. It is the honeycomb structured formation of Si atoms with properties similar to graphene. We investigated the dissolution of Si into Ag. We performed a combination of AES, LEED, STM measurements. We determined the dissolution limit of Si in Ag from data obtained from the AES measurements
Boukari, Khaoula. "De la molécule unique au tapis supramoléculaire sur surface de silicium passivée : Simulations numériques à l'échelle atomique". Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH8858/document.
Texto completo da fonteMy thesis presents the study of the adsorption of single molecules and molecular self-assembly, by numerical simulations at the atomic scale, on a boron doped silicon surface denoted Si(111)(√(3 ) x√3)R30°-B. After presenting the calculation methods and describing the surface model, this thesis is made of two parts: the first one is about the adsorption of single molecules and the second one is devoted to the formation of supramolecular network. In the first part, I studied the adsorption of single molecules on the silicon surface doped boron Si (111)(√(3 ) x√3)R30°-B. I have investigated the adsorption mechanisms of three different molecules: a molecule of pyridyl-azobenzene, a molecule of the family of porphyrin (Cu-TBBP) and two molecules which belong to the family of phtalocyanine (H2Pc and CuPc). For every molecule, I conducted energetic, structural and electronic studies. In most of the cases, I completed this work by calculating STM images in order to compare with experimental results. The second part of this thesis deals with the study of self assembly of organic molecules on the surface of Si(111)(√(3 ) x√3)R30°-B. Molecular self assembly is a technique which allows the formation of highly organized architectures at the atomic scale. I have studied three different molecules forming self assembly on the surface of Si (111)(√(3 ) x√3)R30°-B : 1,3,5-tri(4-bromophenyl benzene) denoted TBB, 1,3,5-tri(4-iodophenyle benzene) denoted TIB et 1,3,5-triphenylbenzene denoted THB. As the formation of a self organized network is a result of equilibrium between molecule-molecule interaction and molecule-substrate one, I have evaluated the interaction energies by using different approximations (LDA, GGA and GGA+D). Then, I have studied the electronic properties of these assemblies by calculating the projected density of states, the charge difference and the Laplacien of the charge or the ELF function (Electronic Localization Function). In order to compare our results with experimental ones, STM images calculations were performed by using two different approaches: the approach of Tersoff-Hamann and the multi-scattering approach proposed by bSKAN code. Finally, I have studied the growth of C60 molecules on the self organized network formed by the TBB molecules deposited on the Si (111)(√(3 ) x√3)R30°-B surface. The energetic study shows that C60 molecules are adsorbed preferentially in the hexagonal nanopores in agreement with the STM observations
Robinson, Michael C. "A study of the diffusion of Pb on Au(111) using scanning tunneling microscopy (STM), with a comparison to embedded atom method (EAM) and surface embedded atom method (SEAM) simulations". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ52846.pdf.
Texto completo da fonteLaird, Rob. "Sim City : the simulation of ideology /". Title page, table of contents and introduction only, 2005. http://web4.library.adelaide.edu.au/theses/09AR/09arl188.pdf.
Texto completo da fonteWatcharasukarn, Montira. "Travel Adaptive Capacity Assessment Simulation (TACA Sim)". Thesis, University of Canterbury. Mechanical Engineering, 2010. http://hdl.handle.net/10092/5119.
Texto completo da fonteDeniz, Ertan. "Dds Based Mil-std-1553b Data Bus Interface Simulation". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614852/index.pdf.
Texto completo da fontePetersson, Jenny. "3D-simulation som avprovningsmetod : Inriktat mot tights för sportutövning". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-14789.
Texto completo da fonteThis study on 3D fitting for sports tights is a Final Bachelor Degree Thesis in design technology. The company the study is developed for works with sportswear and currently has an interest in using 3D simulation as a fitting method. For the development of tights adapted for training, several prototypes are currently being sent between the company and the supplier before the product can start to be produced. In order for the production of the product to take less time, become more environmentally friendly and cost less, the study investigate if 3D fitting is applicable in the company's product development process. To check the validity of 3D fitting of tights, three surveys were made with the purpose of understanding the differences between physical and virtual testing. The studies focus on the base size Small and the largest size Extra Large. The study shows that 3D simulation is partially functional testing method for tights when it comes to controlling the design. In order to control the ease, the method in this study is not working. The participants of the study showed a positive attitude to use the method in their product development process, but mainly as a complement to physical fittings early in the design process.
Holt, Jennifer A. "THz Systems: Spectroscopy and Simulation". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417536443.
Texto completo da fonteLivros sobre o assunto "Simulations STM"
McClean, Sean. Show me SAM: Computerised educational simulation-game. [S.l: The Author], 1997.
Encontre o texto completo da fonteDeMaria, Rusel. Sim City 3000: Prima's official strategy guide. Rocklin, Calif: Prima Pub., 1999.
Encontre o texto completo da fonteGreg, Kramer. Sim City 3000 unlimited: Prima's official strategy guide. Roseville, Calif: Prima Pub., 2000.
Encontre o texto completo da fontePaul, Gilman, e National Renewable Energy Laboratory (U.S.), eds. Technical manual for the SAM Physical Trough model. Golden, Colo: National Renewable Energy Laboratory, 2011.
Encontre o texto completo da fonteR, Taylor Tony, e Villar Julie N, eds. Elements of STIL: Principles and applications of IEEE Std. 1450. Boston: Kluwer Academic Publishers, 2003.
Encontre o texto completo da fonteEgon, Marx, e National Institute of Standards and Technology (U.S.), eds. User's manual for the program MONSEL-1: Monte Carlo simulation of SEM signals for linewidth metrology. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Encontre o texto completo da fonteEgon, Marx, e National Institute of Standards and Technology (U.S.), eds. User's manual for the program MONSEL-1: Monte Carlo simulation of SEM signals for linewidth metrology. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Encontre o texto completo da fonteEASTMAN. Official Guide to Command & Conquer. Indianapolis, USA: BradyGames, 1995.
Encontre o texto completo da fonteMaston, Gregory A. Elements of STIL: Principles and applications of IEEE Std. 1450. Boston, MA: Kluwer Academic Publishers, 2004.
Encontre o texto completo da fonteTauber, Daniel A. SimCity 2000 strategies and secrets. 2a ed. San Francisco: Sybex, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Simulations STM"
Kepenekian, M., R. Robles, R. Korytár e N. Lorente. "Simulations of Constant Current STM Images of Open-Shell Systems". In Imaging and Manipulating Molecular Orbitals, 117–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38809-5_10.
Texto completo da fonteKönözsy, László. "Two-Dimensional Simulations with an Anisotropic Hybrid k-$$\omega $$ SST/STM Approach". In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 215–357. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_4.
Texto completo da fonteKönözsy, László. "Three-Dimensional Simulations with an Anisotropic Hybrid k-$$\omega $$ SST/STM Approach". In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 359–404. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_5.
Texto completo da fonteLawler, Gregory, e Lester Coyle. "Other simulations". In The Student Mathematical Library, 75–80. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/12.
Texto completo da fonteLawler, Gregory, e Lester Coyle. "Random walk simulations". In The Student Mathematical Library, 69–74. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/11.
Texto completo da fonteLawler, Gregory, e Lester Coyle. "Simulations in finance". In The Student Mathematical Library, 81–84. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/13.
Texto completo da fonteWitthaut, Markus, e Bernd Hellingrath. "Simulation von SCM-Strategien". In Große Netze der Logistik, 59–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71048-6_3.
Texto completo da fontevan Rosmalen, Peter. "SAM, Simulation And Multimedia". In Design and Production of Multimedia and Simulation-based Learning Material, 167–87. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0942-0_9.
Texto completo da fonteStanley, Todd. "Use Computer Models or Simulations". In 10 Performance-Based STEM Projects, 105–14. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003232520-10.
Texto completo da fonteStanley, Todd. "Use Computer Models or Simulations". In 10 Performance-Based STEM Projects, 109–16. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003232513-10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Simulations STM"
Byun, Ki Ryang. "Atomic Scale Simulations of Silicon Nanotubes under Axial Compression: AFM Application". In SCANNING TUNNELING MICROSCOPY/SPECTROSCOPY AND RELATED TECHNIQUES: 12th International Conference STM'03. AIP, 2003. http://dx.doi.org/10.1063/1.1639752.
Texto completo da fonteSando, Kosuke, Ryota Wada, Jeremy Rohmer, Sophie Lecacheux e Philip Jonathan. "Estimating Joint Extremes of Significant Wave Height and Wind Speed for Tropical Cyclones". In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79888.
Texto completo da fonteMa, Boyang, Adi Goldner e Michael Krüger. "Ultrafast Scanning Tunneling Microscopy". In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.th4a.30.
Texto completo da fonteMohseni, Seyed Mohammad Javad, e Arndt Goldack. "Verification of reinforced concrete D-regions designed with strut-and- tie models by nonlinear FE-Methods". In IABSE Congress, New Delhi 2023: Engineering for Sustainable Development. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/newdelhi.2023.1424.
Texto completo da fonteTsukamoto, S., G. R. Bell, A. Ishii e Y. Arakawa. "InAs wetting layer and quantum dots on GaAs(001) surface studied by in situ STM placed inside MBE growth chamber and kMC simulations based on first-principles calculations". In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2729790.
Texto completo da fonteFukuda, Koichi, Masayasu Nishizawa, Tetsuya Tada, Leonid Bolotov, Kaina Suzuki, Shigeo Sato, Hiroshi Arimoto e Toshihiko Kanayama. "Simulation of light-illuminated STM measurements". In 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2014. http://dx.doi.org/10.1109/sispad.2014.6931580.
Texto completo da fonteKaris, T. E., M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch e R. P. McCormack. "Tracking Servo Signal Simulation from STM Surface Profiles". In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ods.1991.wb6.
Texto completo da fonteGrella, Luca, Matthew Marcus, Gian Lorusso e David L. Adler. "SEM voltage contrast simulations". In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Eric Munro. SPIE, 1999. http://dx.doi.org/10.1117/12.370123.
Texto completo da fonteMiao, Wansheng, Yue Zhou, Bingfei Li, Bobo Feng e Huanchao Du. "XMI-based conversion of SysML-STM models to C++ code". In ICCMS 2024: 2024 The 16th International Conference on Computer Modeling and Simulation, 15–19. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3686812.3686815.
Texto completo da fonteKapitan, Vitalii, Konstantin Nefedev e Alexey Peretyatko. "Supercomputer data processing and simulation of MFM and STM experiments". In 2014 Tenth International Vacuum Electron Sources Conference (IVESC). IEEE, 2014. http://dx.doi.org/10.1109/ivesc.2014.6892003.
Texto completo da fonteRelatórios de organizações sobre o assunto "Simulations STM"
W. Park, J. Breslau, J. Chen, G.Y. Fu, S.C. Jardin, S. Klasky, J. Menard et al. Nonlinear Simulation Studies of Tokamaks and STs. Office of Scientific and Technical Information (OSTI), julho de 2003. http://dx.doi.org/10.2172/814698.
Texto completo da fonteBekar, Kursat B., Thomas Martin Miller, Bruce W. Patton e Charles F. Weber. Rapid Evaluation of Particle Properties using Inverse SEM Simulations. Office of Scientific and Technical Information (OSTI), janeiro de 2016. http://dx.doi.org/10.2172/1238023.
Texto completo da fonteHua, Thanh, Ling Zou e Rui Hu. Simulations of the High Temperature Test Facility using SAM. Office of Scientific and Technical Information (OSTI), agosto de 2020. http://dx.doi.org/10.2172/1825879.
Texto completo da fonteZou, Ling, Dan O'Grady e Rui Hu. Enabling Parallel Execution of System-level Simulations in SAM. Office of Scientific and Technical Information (OSTI), novembro de 2022. http://dx.doi.org/10.2172/1898043.
Texto completo da fonteMartin, S., Larry Daggett, Morgan Johnston, Chris Hewlett, Kiara Pazan, Mario Sanchez, Dennis Webb, Mary Allison e George Burkley. Houston Ship Channel Expansion Improvement Project – Navigation Channel Improvement Study : ship simulation results. Coastal and Hydraulics Laboratory (U.S.), novembro de 2021. http://dx.doi.org/10.21079/11681/42342.
Texto completo da fontePazan, Kiara, Natalie Memarsadeghi e Jacob Hodges. Lock and Dam 25, Upper Mississippi River Navigation Study : ship-simulation results. Engineer Research and Development Center (U.S.), junho de 2024. http://dx.doi.org/10.21079/11681/48650.
Texto completo da fonteSantander, Horacio, e Martin Cicowiez. Construcción de una Matriz de Contabilidad Social para Paraguay para el Año 2009. Inter-American Development Bank, novembro de 2015. http://dx.doi.org/10.18235/0010078.
Texto completo da fonteErvin, Kelly, Karl Smink, Bryan Vu e Jonathan Boone. Ship Simulator of the Future in virtual reality. Engineer Research and Development Center (U.S.), setembro de 2022. http://dx.doi.org/10.21079/11681/45502.
Texto completo da fonteMitchell, R. STL (Simulation Technology Laboratory) Global Control System, technical reference. Office of Scientific and Technical Information (OSTI), janeiro de 1990. http://dx.doi.org/10.2172/6812798.
Texto completo da fonteJones, Scott A., William Kamery, Arnold Barry Baker, Thomas E. Drennen, Andrew E. Lutz e Jennifer Elizabeth Rosthal. The Hydrogen Futures Simulation Model (H[2]Sim) technical description. Office of Scientific and Technical Information (OSTI), outubro de 2004. http://dx.doi.org/10.2172/919630.
Texto completo da fonte