Literatura científica selecionada sobre o tema "Silicon solar cells – Design and construction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Silicon solar cells – Design and construction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Silicon solar cells – Design and construction"
Pa, P. S. "Design of Thin Films Removal on Solar-Cells Silicon-Wafers Surface". Applied Mechanics and Materials 121-126 (outubro de 2011): 805–9. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.805.
Texto completo da fontePlebankiewicz, Ireneusz, Krzysztof Artur Bogdanowicz e Agnieszka Iwan. "Photo-Rechargeable Electric Energy Storage Systems Based on Silicon Solar Cells and Supercapacitor-Engineering Concept". Energies 13, n.º 15 (28 de julho de 2020): 3867. http://dx.doi.org/10.3390/en13153867.
Texto completo da fonteTian, Bozhi, e Charles M. Lieber. "Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes". Pure and Applied Chemistry 83, n.º 12 (31 de outubro de 2011): 2153–69. http://dx.doi.org/10.1351/pac-con-11-08-25.
Texto completo da fonteXue, Chun Rong, e Xia Yun Sun. "Design for Amorphous Silicon Solar Cells". Advanced Materials Research 750-752 (agosto de 2013): 961–64. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.961.
Texto completo da fonteAllen, Norman S. "Book Review: Light Harvesting NanoMaterials, Bentham e-Books, ISBN: 978-1-60805-959-1; e-ISBN: 978-1-60805-958-4". Open Materials Science Journal 9, n.º 1 (26 de junho de 2015): 49. http://dx.doi.org/10.2174/1874088x01509010049.
Texto completo da fonteRuan, Kaiqun, Ke Ding, Yuming Wang, Senlin Diao, Zhibin Shao, Xiujuan Zhang e Jiansheng Jie. "Flexible graphene/silicon heterojunction solar cells". Journal of Materials Chemistry A 3, n.º 27 (2015): 14370–77. http://dx.doi.org/10.1039/c5ta03652f.
Texto completo da fonteFeteha, M. Y., G. M. Eldallal e M. M. Soliman. "Optimum design for bifacial silicon solar cells". Renewable Energy 22, n.º 1-3 (janeiro de 2001): 269–74. http://dx.doi.org/10.1016/s0960-1481(00)00025-2.
Texto completo da fonteStrehlke, S., S. Bastide, J. Guillet e C. Lévy-Clément. "Design of porous silicon antireflection coatings for silicon solar cells". Materials Science and Engineering: B 69-70 (janeiro de 2000): 81–86. http://dx.doi.org/10.1016/s0921-5107(99)00272-x.
Texto completo da fonteHossain, Mohammad I., Wayesh Qarony, Vladislav Jovanov, Yuen H. Tsang e Dietmar Knipp. "Nanophotonic design of perovskite/silicon tandem solar cells". Journal of Materials Chemistry A 6, n.º 8 (2018): 3625–33. http://dx.doi.org/10.1039/c8ta00628h.
Texto completo da fonteZhou, Zhen, e Linxing Shi. "Optimized design of silicon thin film solar cells with silicon nanogratings". Optik 126, n.º 6 (março de 2015): 614–17. http://dx.doi.org/10.1016/j.ijleo.2015.02.001.
Texto completo da fonteTeses / dissertações sobre o assunto "Silicon solar cells – Design and construction"
Shih, Jeanne-Louise. "Zinc oxide-silicon heterojunction solar cells by sputtering". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112583.
Texto completo da fonteRichards, Bryce Sydney Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Novel uses of titanium dioxide for silicon solar cells". Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications, 2002. http://handle.unsw.edu.au/1959.4/20476.
Texto completo da fonteNarasimha, Shreesh. "Understanding and application of screen-printed metallization, aluminum back surface fields, and dielectric surface passivation for high-efficiency silicon solar cells". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16453.
Texto completo da fonteFisher, Kate School of Photovoltaic & Renewable Energy Engineering UNSW. "The pitfalls of pit contacts: electroless metallization for c-Si solar cells". Awarded by:University of New South Wales. School of Photovoltaic and Renewable Energy Engineering, 2007. http://handle.unsw.edu.au/1959.4/29568.
Texto completo da fonteKrygowski, Thomas Wendell. "A novel simultaneous diffusion technology for low-cost, high-efficiency silicon solar cells". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/22973.
Texto completo da fonteWeber, J??rgen Wolfgang Photovoltaic & Renewable Engergy Engineering UNSW. "Design, construction and testing of a high-vacuum anneal chamber for in-situ crystallisation of silicon thin-film solar cells". Awarded by:University of New South Wales. Photovoltaic and Renewable Engergy Engineering, 2006. http://handle.unsw.edu.au/1959.4/24847.
Texto completo da fonteSheng, Xing Ph D. Massachusetts Institute of Technology. "Thin-film silicon solar cells : photonic design, process and fundamentals". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/105936.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 153-159).
The photovoltaic technology has been attracting widespread attention because of its effective energy harvest by directly converting solar energy into electricity. Thin-film silicon solar cells are believed to be a promising candidate for further scaled-up production and cost reduction while maintaining the advantages of bulk silicon. The efficiency of thin-film Si solar cells critically depends on optical absorption in the silicon layer since silicon has low absorption coefficient in the red and near-infrared (IR) wavelength ranges due to its indirect bandgap nature. This thesis aims at understanding, designing, and fabricating novel photonic structures for efficiency enhancement in thin-film Si solar cells. We have explored a previously reported a photonic crystal (PC) based structure to improve light absorption in thin-film Si solar cells. The PC structure combines a dielectric grating layer and a distributed Bragg reflector (DBR) for effcient light scattering and reflection, increasing light path length in the thin-film cell. We have understood the operation principles for this design by using photonic band theories and electromagnetic wave simulations. we discover that this DBR with gratings exhibit unusual light trapping in a way different from metal reflectors and photonic crystals. The light trapping effects for the DBR with and without reflector are numerically investigated. The self-assembled anodic aluminum oxide (AAO) technique is introduced to non- lithographically fabricate the grating structure. We adjust the AAO structural parameters by using different anodization voltages, times and electrolytes. Two-step anodization is employed to obtain nearly hexagonal AAO pattern. The interpore periods of the fabricated AAO are calculated by fast Fourier transform (FFT) analysis. We have also demonstrated the fabrication of ordered patterns made of other materials like amorphous Si (a-Si) and silver by using the AAO membrane as a deposition mask. Numerical simulations predict that the fabricated AAO pattern exhibits light trapping performance comparable to the perfectly periodic grating layer. We have implemented the light trapping concepts combining the self-assembled AAO layer and the DBR in the backside of crystalline Si wafers. Photoconductivity measurements suggest that the light absorption is improved in the near-IR spectral range near the band edge of Si. Furthermore, different types of thin-film Si solar cells, including a-Si, mi- crocrystalline Si ([mu]-Si) and micromorph Si solar cells, are investigated. For demonstration, the designed structure is integrated into a 1:5 [mu]m thick [mu]c-Si solar cell. We use numerical simulations to obtain the optimal structure parameters for the grating and the DBR, and then we fabricate the optimized structures using the AAO membrane as a template. The prototype devices integrating our proposed backside structure yield a 21% improvement in efficiency. This is further verified by quantum efficiency measurements, which clearly indicate stronger light absorption in the red and near-IR spectral ranges. Lastly, we have explored the fundamental light trapping limits for thin-film Si solar cells in the wave optics regime. We develop a deterministic method to optimize periodic textures for light trapping. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. In the weak ab- sorption regime, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7[pi]n, considerably larger than the classical [pi]n Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. Since the [pi]n Lambertian limit still applies for isotropic incident light, our optimization methodology can be thought of optimizing the angle/enhancement tradeoff for periodic textures. Based on a modified Shockley-Queisser theory, we conclude that it is possible to achieve more than 20% efficiency in a 1:5 [mu]m thick crystalline Si cell if advanced light trapping schemes can be realized.
by Xing Sheng.
Ph. D.
Jain, Nikhil. "Design of III-V Multijunction Solar Cells on Silicon Substrate". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/33048.
Texto completo da fonteMaster of Science
Sana, Peyman. "Design, fabrication and analysis of high efficiency multicrystalline silicon solar cells". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15039.
Texto completo da fonteSun, Yechuan, e 孙也川. "Improvement of polymer solar cells through device design". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47849940.
Texto completo da fontepublished_or_final_version
Physics
Master
Master of Philosophy
Livros sobre o assunto "Silicon solar cells – Design and construction"
Schropp, Ruud E. I. Amorphous and microcrystalline silicon solar cells: Modeling, materials, and device technology. Boston: Kluwer Academic, 1998.
Encontre o texto completo da fonteWaldvogel, Winfried. Herstellung und Charakterisierung von SIPOS-Silizium-Solarzellen. Konstanz: Hartung-Gorre, 1991.
Encontre o texto completo da fonteBasin, A. S. Poluchenie kremnievykh plastin dli͡a solnechnoĭ ėnergetiki: Metody i tekhnologii. Novosibirsk: In-t teplofiziki SO RAN, 2000.
Encontre o texto completo da fonteMeier, Johann Emil. Herstellung und Untersuchung passivierender Grenzschichten in amorphen Silizium Schottky-Solarzellen. Konstanz: Hartung-Gorre, 1992.
Encontre o texto completo da fonteKōmuten, Takenaka. Taiyō denchi ittaigata gaisōzai oyobi chokuryū kyūden ni yoru jiritsugata enerugī jukyū shisutemu no gijutsu kaihatsu: Itaku gyōmu seika hōkokusho. [Tōkyō-to Kōtō-ku]: Takenaka Kōmuten, 2014.
Encontre o texto completo da fonteKagōbutsu hakumaku taiyō denchi no saishin gijutsu: Recent development of thin film compound semiconductor photovoltaic cells. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2013.
Encontre o texto completo da fonteVögt, Michael. Herstellung und Charakterisierung von Heterosolarzellen auf der Basis von WSe2-Einkristallen. Konstanz: Hartung-Gorre, 1992.
Encontre o texto completo da fonteBuild your own solar panel. Wheelock, VT: Wheelock Mountain Publications, 2000.
Encontre o texto completo da fonteservice), ScienceDirect (Online, ed. Cu(InGa)Se2 based thin film solar cells. London: Academic, 2009.
Encontre o texto completo da fonteYamaguchi, Masafumi, e Laurentiu Fara. Advanced solar cell materials, technology, modeling, and simulation. Hershey PA: Engineering Science Reference, 2012.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Silicon solar cells – Design and construction"
Pudasaini, Pushpa Raj, e Arturo A. Ayon. "Design Guidelines for High Efficiency Plasmonics Silicon Solar Cells". In High-Efficiency Solar Cells, 497–514. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_16.
Texto completo da fonteRuckteschler, R., e J. Knobloch. "Design Considerations for Heavily Doped Layers in Silicon Solar Cells". In Seventh E.C. Photovoltaic Solar Energy Conference, 1094–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_197.
Texto completo da fonteMetri, Ashwini A., T. S. Rani e Preeta Sharan. "A Simulation Study of Design Parameter for Quantum Dot-Based Solar Cells". In Silicon Photonics & High Performance Computing, 131–38. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7656-5_15.
Texto completo da fonteZampiva, Rubia Young Sun, Annelise Kopp Alves e Carlos Perez Bergmann. "Mg2SiO4:Er3+ Coating for Efficiency Increase of Silicon-Based Commercial Solar Cells". In Sustainable Design and Manufacturing 2017, 820–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57078-5_77.
Texto completo da fontePosthuma, Niels E., Barry J. O’Sullivan e Ivan Gordon. "Technology and Design of Classical and Heterojunction Back Contacted Silicon Solar Cells". In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 521–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_16.
Texto completo da fonteSaravanan, S., R. S. Dubey e S. Kalainathan. "Design and Analysis of Thin Film Based Silicon Solar Cells for Efficient Light Trapping". In Springer Proceedings in Physics, 129–34. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_17.
Texto completo da fonteChen, Fengxiang, e Lisheng Wang. "Light Trapping Design in Silicon-Based Solar Cells". In Solar Cells - Silicon Wafer-Based Technologies. InTech, 2011. http://dx.doi.org/10.5772/20962.
Texto completo da fonteAkubude, V. C. "Versatile Applications of Solar Cells". In Materials Research Foundations, 24–39. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901410-2.
Texto completo da fonteKumar Singh, Manoj, Pratik V. Shinde, Pratap Singh e Pawan Kumar Tyagi. "Two-Dimensional Materials for Advanced Solar Cells". In Solar Cells - Theory, Materials and Recent Advances. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94114.
Texto completo da fonte"Graphene Materials for Third Generation Solar Cell Technologies". In Materials for Solar Cell Technologies I, 29–61. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090-2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Silicon solar cells – Design and construction"
Dubey, Swapnil, C. S. Soon, Sin Lih Chin e Leon Lee. "Performance Analysis of Innovative Top Cooling Thermal Photovoltaic (TPV) Modules Under Tropics". In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59075.
Texto completo da fonteDalal, Vikram L., B. Moradi e G. Baldwin. "Design considerations for stable amorphous silicon solar cells". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41040.
Texto completo da fonteGowrishankar, Vignesh, Shawn R. Scully, Michael D. McGehee, Qi Wang e Howard Branz. "Amorphous-Silicon / Polymer Solar Cells and Key Design Rules for Hybrid Solar Cells". In Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279419.
Texto completo da fonteKerestes, Christopher, Yi Wang, Kevin Shreve e Allen Barnett. "Transparent silicon solar cells: Design, fabrication, and analysis". In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614408.
Texto completo da fonteLiu, Yen-Chih, Wei-Yu Chen, Chien-Hung Lin e Chi-Chun Li. "Crystalline silicon solar cells selective emitter pattern design". In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186387.
Texto completo da fonteHejazi, F., S. Y. Ding, Y. Sun, A. Bottomley, A. Ianoul e W. N. Ye. "Design of plasmonic enhanced silicon-based solar cells". In Photonics North 2012, editado por Jean-Claude Kieffer. SPIE, 2012. http://dx.doi.org/10.1117/12.2006549.
Texto completo da fonteGuha, S., J. Yang, A. Pawlikiewicz, T. Glatfelter, R. Ross e S. R. Ovshinsky. "A novel design for amorphous silicon alloy solar cells". In Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105659.
Texto completo da fonteKrc, J., A. Campa, F. Smole e M. Topic. "Potential of optical design in tandem micromorph silicon solar cells". In Photonics Europe, editado por Andreas Gombert. SPIE, 2006. http://dx.doi.org/10.1117/12.662807.
Texto completo da fonteNgwe Soe Zin, Andrew Blakers, Evan Franklin e Vernie Everett. "Design, characterization and fabrication of silicon solar cells for ≫50% efficient 6-junction tandem solar cells". In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922451.
Texto completo da fonteKerestes, Christopher, Timothy Creazzo e Allen Barnett. "Design and fabrication of transparent silicon solar cells for high efficiency". In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411328.
Texto completo da fonte