Literatura científica selecionada sobre o tema "Silicon solar cells"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Silicon solar cells".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Silicon solar cells"
Vlaskin, V. I. "Nanocrystalline silicon carbide films for solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 19, n.º 3 (30 de setembro de 2016): 273–78. http://dx.doi.org/10.15407/spqeo19.03.273.
Texto completo da fonteWagner, P. "Silicon solar cells". Microelectronics Journal 19, n.º 4 (julho de 1988): 37–50. http://dx.doi.org/10.1016/s0026-2692(88)80043-0.
Texto completo da fonteWenham, S. R., e M. A. Green. "Silicon solar cells". Progress in Photovoltaics: Research and Applications 4, n.º 1 (janeiro de 1996): 3–33. http://dx.doi.org/10.1002/(sici)1099-159x(199601/02)4:1<3::aid-pip117>3.0.co;2-s.
Texto completo da fonteKorkishko, R. M. "Analysis of features of recombination mechanisms in silicon solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 17, n.º 1 (31 de março de 2014): 14–20. http://dx.doi.org/10.15407/spqeo17.01.014.
Texto completo da fonteTsakalakos, L., J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima e J. Rand. "Silicon nanowire solar cells". Applied Physics Letters 91, n.º 23 (3 de dezembro de 2007): 233117. http://dx.doi.org/10.1063/1.2821113.
Texto completo da fonteHill, R. "Amorphous Silicon Solar Cells". Electronics and Power 32, n.º 9 (1986): 680. http://dx.doi.org/10.1049/ep.1986.0402.
Texto completo da fonteGalloni, Roberto. "Amorphous silicon solar cells". Renewable Energy 8, n.º 1-4 (maio de 1996): 400–404. http://dx.doi.org/10.1016/0960-1481(96)88886-0.
Texto completo da fonteBlakers, A. W., e T. Armour. "Flexible silicon solar cells". Solar Energy Materials and Solar Cells 93, n.º 8 (agosto de 2009): 1440–43. http://dx.doi.org/10.1016/j.solmat.2009.03.016.
Texto completo da fonteWon, Rachel. "Graphene–silicon solar cells". Nature Photonics 4, n.º 7 (julho de 2010): 411. http://dx.doi.org/10.1038/nphoton.2010.140.
Texto completo da fonteCarlson, D. E. "Amorphous-silicon solar cells". IEEE Transactions on Electron Devices 36, n.º 12 (1989): 2775–80. http://dx.doi.org/10.1109/16.40936.
Texto completo da fonteTeses / dissertações sobre o assunto "Silicon solar cells"
Søiland, Anne Karin. "Silicon for Solar Cells". Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.
Texto completo da fonteThis thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.
The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kinetics of the removal reactions for dissolved carbon and boron in a silicon melt by oxidative gas treatment. The main focus was on carbon, since boron may be removed by other means. A plasma arc was employed in combination with inductive heating. The project was, however, closed after only two experiments. The main observations from these two experiments were a significant boron removal, and the formation of a silica layer on the melt surface when the oxygen content in the gas was increased from 2 to 4 vol%. This silica layer inhibited further reactions.
Multi-crystalline (mc) silicon produced by directional solidification constitutes a large part of the solar cell market today. Other techniques are emerging/developing and to keep its position in the market it is important to stay competitive. Therefore increasing the knowledge on the material produced is necessary. Gaining knowledge also on phenomenas occurring during the crystallisation process can give a better process control.
Part II of this work was motivated by the industry reporting high inclusion contents in certain areas of the material. The aim of the work was to increase the knowledge of inclusion formation in this system. The experimental work was divided into three different parts;
1) Inclusion study
2) Extraction of melt samples during crystallisation, these were to be analysed for carbon- and nitrogen. Giving thus information of the contents in the liquid phase during soldification.
3) Fourier Transform Infrared Spectroscopy (FTIR)-measurements of the substitutional carbon contents in wafers taken from similar height positions as the melt samples. Giving thus information of the dissolved carbon content in the solid phase.
The inclusion study showed that the large inclusions found in this material are β-SiC and β-Si3N4. They appear in particularly high quantities in the top-cuts. The nitrides grow into larger networks, while the carbide particles tend to grow on the nitrides. The latter seem to act as nucleating centers for carbide precipitation. The main part of inclusions in the topcuts lie in the size range from 100- 1000 µm in diameter when measured by the Coulter laser diffraction method.
A method for sampling of the melt during crystallisation under reduced pressure was developed, giving thus the possibility of indicating the bulk concentration in the melt of carbon and nitrogen. The initial carbon concentration was measured to ~30 and 40 ppm mass when recycled material was employed in the charge and ~ 20 ppm mass when no recycled material was added. Since the melt temperature at this initial stage is ~1500 °C these carbon levels are below the solubility limit. The carbon profiles increase with increasing fraction solidified. For two profiles there is a tendency of decreasing contents at high fraction solidified.
For nitrogen the initial contents were 10, 12 and 44 ppm mass. The nitrogen contents tend to decrease with increasing fraction solidified. The surface temperature also decreases with increasing fraction solidified. Indicating that the melt is saturated with nitrogen already at the initial stage. The proposed mechanism of formation is by dissolution of coating particles, giving a saturated melt, where β-Si3N4 precipitates when cooling. Supporting this mechanism are the findings of smaller nitride particles at low fraction solidified, that the precipitated phase are β-particles, and the decreasing nitrogen contents with increasing fraction solidified.
The carbon profile for the solid phase goes through a maximum value appearing at a fraction solidified from 0.4 to 0.7. The profiles flatten out after the peak and attains a value of ~ 8 ppma. This drop in carbon content is associated with a precipitation of silicon carbide. It is suggested that the precipitation of silicon carbide occurs after a build-up of carbon in the solute boundary layer.
FTIR-measurements for substitutional carbon and interstitial oxygen were initiated at the institute as a part of the work. A round robin test was conducted, with the Energy Research Centre of the Netherlands (ECN) and the University of Milano-Bicocci (UniMiB) as the participants. The measurements were controlled against Secondary Ion Mass Spectrometer analyses. For oxygen the results showed a good correspondence between the FTIR-measurements and the SIMS. For carbon the SIMS-measurements were significantly lower than the FTIR-measurements. This is probably due to the low resistivity of the samples (~1 Ω cm), giving free carrier absorption and an overestimation of the carbon content.
Tarabsheh, Anas al. "Amorphous silicon based solar cells". kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.
Texto completo da fonteAl, Tarabsheh Anas. "Amorphous silicon based solar cells". [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.
Texto completo da fonteBett, Alexander Jürgen [Verfasser], e Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Texto completo da fonteSchultz, Oliver. "High-efficiency multicrystalline silicon solar cells". München Verl. Dr. Hut, 2005. http://deposit.d-nb.de/cgi-bin/dokserv?idn=977880567.
Texto completo da fonteEcheverria, Molina Maria Ines. "Crack Analysis in Silicon Solar Cells". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4311.
Texto completo da fonteLi, Dai-Yin. "Texturization of multicrystalline silicon solar cells". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64615.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 103-111).
A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create a honeycomb texture. Two distinct approaches for surface texturization were studied. The first approach was photo-defined etching. For this approach, the research focus was to take advantage of Vall6ra's technique published in 1999, which demonstrated a high-contrast surface texture on p-type silicon created by photo-suppressed etching. Further theoretical consideration, however, led to a conclusion that diffusion of bromine in the electrolyte impacts the resolution achievable with Vallera's technique. Also, diffusion of photocarriers may impose an additional limitation on the resolution. The second approach studied was based on soft lithography. For this approach, a texturization process sequence that created a honeycomb texture with 20 ptm spacing on polished wafers at low cost and high throughput was developed. Novel techniques were incorporated in the process sequence, including surface wettability patterning by microfluidic lithography and selective condensation based on Raoult's law. Microfluidic lithography was used to create a wettability pattern from a 100A oxide layer, and selective condensation based on Raoult's law was used to reliably increase the thickness of the glycerol/water liquid film entrained on hydrophilic oxide islands approximately from 0.2 pm to 2.5 pm . However, there remain several areas that require further development to make the process sequence truly successful, especially when applied to multicrystalline wafers.
by Dai-Yin Li.
Ph.D.
Osorio, Ruy Sebastian Bonilla. "Surface passivation for silicon solar cells". Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:46ebd390-8c47-4e4b-8c26-e843e8c12cc4.
Texto completo da fonteZhu, Mingxuan. "Silicon nanowires for hybrid solar cells". Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/94/57/87/PDF/The_manuscript-4.pdf.
Texto completo da fonteForster, Maxime. "Compensation engineering for silicon solar cells". Phd thesis, INSA de Lyon, 2012. http://hdl.handle.net/1885/156020.
Texto completo da fonteLivros sobre o assunto "Silicon solar cells"
Zaidi, Saleem Hussain. Crystalline Silicon Solar Cells. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73379-7.
Texto completo da fonteGoetzberger, Adolf, Joachim Knobloch e Bernhard Voß. Crystalline Silicon Solar Cells. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781119033769.
Texto completo da fonteHann, Geoff. Amorphous silicon solar cells. East Perth, W.A: Minerals and Energy Research Institute of Western Australia, 1997.
Encontre o texto completo da fonteTakahashi, K. Amorphous silicon solar cells. London: North Oxford Academic, 1986.
Encontre o texto completo da fonteFahrner, Wolfgang Rainer, ed. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37039-7.
Texto completo da fonteFahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Encontre o texto completo da fonteIkhmayies, Shadia, ed. Advances in Silicon Solar Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69703-1.
Texto completo da fonteA, Green Martin, ed. High efficiency silicon solar cells. Aedermannsdorf, Switzerland: Trans Tech SA, 1987.
Encontre o texto completo da fonteA, Green Martin, ed. High efficiency silicon solar cells. Aedermannsdorf, Switzerland: Trans Tech SA, 1987.
Encontre o texto completo da fontePizzini, Sergio. Advanced silicon materials for photovoltaic applications. Hoboken, NJ: John Wiley & Sons, 2012.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Silicon solar cells"
Zweibel, Ken. "Silicon Cells". In Harnessing Solar Power, 101–11. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6110-5_6.
Texto completo da fonteZweibel, Ken. "Silicon Cells". In Harnessing Solar Power, 113–27. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6110-5_7.
Texto completo da fonteMartinuzzi, Santo, Abdelillah Slaoui, Jean-Paul Kleider, Mustapha Lemiti, Christian Trassy, Claude Levy-Clement, Sébastien Dubois et al. "Silicon Solar Cells silicon solar cell , Crystalline". In Solar Energy, 226–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_461.
Texto completo da fonteMartinuzzi, Santo, Abdelillah Slaoui, Jean-Paul Kleider, Mustapha Lemiti, Christian Trassy, Claude Levy-Clement, Sébastien Dubois et al. "Silicon Solar Cells silicon solar cell , Crystalline". In Encyclopedia of Sustainability Science and Technology, 9196–240. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_461.
Texto completo da fonteArya, Sandeep, e Prerna Mahajan. "Silicon-Based Solar Cells". In Solar Cells, 37–76. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7333-0_2.
Texto completo da fonteMertens, R. "Crystalline Silicon Solar Cells". In Semiconductor Silicon, 339–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-74723-6_27.
Texto completo da fonteWronski, Christopher R., e Nicolas Wyrsch. "Silicon Solar Cells silicon solar cell , Thin-film silicon solar cell thin-film". In Solar Energy, 270–322. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_462.
Texto completo da fonteGoetzberger, Adolf, Joachim Knobloch e Bernhard Voß. "Solar Power". In Crystalline Silicon Solar Cells, 5–7. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781119033769.ch2.
Texto completo da fonteWronski, Christopher R., e Nicolas Wyrsch. "Silicon Solar Cells silicon solar cell , Thin-film silicon solar cell thin-film". In Encyclopedia of Sustainability Science and Technology, 9240–92. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_462.
Texto completo da fonteCai, Boyuan, e Baohua Jia. "Nanophotonics silicon solar cells". In Silicon Nanomaterials Sourcebook, 485–98. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Series in materials science and engineering: CRC Press, 2017. http://dx.doi.org/10.4324/9781315153551-24.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Silicon solar cells"
Bhat, P. K., D. S. Shen e R. E. Hollingsworth. "Stability of amorphous silicon solar cells". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41008.
Texto completo da fonteLuderer, Christoph, Henning Nagel, Frank Feldmann, Jan Christoph Goldschmidt, Martin Bivour e Martin Hermle. "PERC-like Si bottom solar cells for industrial perovskite-Si tandem solar cells". In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0097026.
Texto completo da fonteBrandt, Martin S., e Martin Stutzmann. "Investigation of the Staebler-Wronski effect in a-Si:H by spin-dependent photoconductivity". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41015.
Texto completo da fonteRedfield, David, e Richard H. Bube. "The rehybridized two-site (RTS) model for defects in a-Si:H". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41016.
Texto completo da fonteHata, N., e S. Wagner. "The application of a comprehensive defect model to the stability of a-Si:H". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41017.
Texto completo da fonteMcMahon, T. J. "Defect equilibration in device quality a-Si:H and its relation to light-induced defects". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41018.
Texto completo da fonteCohen, J. David, e Thomas M. Leen. "Investigation of defect reactions involved in metastability of hydrogenated amorphous silicon". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41019.
Texto completo da fonteStreet, R. A. "Metastability and the hydrogen distribution in a-Si:H". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41031.
Texto completo da fonteBennett, M., e K. Rajan. "Thermal annealing of photodegraded a-SiGe:H solar cells". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41007.
Texto completo da fonteFuhs, W., H. Branz, W. Jackson, D. Redfield, B. Street e M. Stutzmann. "Panel on metastability modeling". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41009.
Texto completo da fonteRelatórios de organizações sobre o assunto "Silicon solar cells"
Hall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, J. Cotter, T. Hughes-Lampros, J. A. Rand, T. R. Ruffins e A. M. Barnett. Thin silicon solar cells. Office of Scientific and Technical Information (OSTI), dezembro de 1992. http://dx.doi.org/10.2172/10121623.
Texto completo da fonteSinton, R. A., A. Cuevas, R. R. King e R. M. Swanson. High-efficiency concentrator silicon solar cells. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6343818.
Texto completo da fonteMcGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), março de 2021. http://dx.doi.org/10.2172/1830219.
Texto completo da fonteBlack, Marcie. Intermediate Bandgap Solar Cells From Nanostructured Silicon. Office of Scientific and Technical Information (OSTI), outubro de 2014. http://dx.doi.org/10.2172/1163091.
Texto completo da fonteBlack, Marcie. Intermediate Bandgap Solar Cells From Nanostructured Silicon. Office of Scientific and Technical Information (OSTI), outubro de 2014. http://dx.doi.org/10.2172/1163251.
Texto completo da fonteHaney, R. E., A. Neugroschel, K. Misiakos e F. A. Lindholm. Frequency-domain transient analysis of silicon solar cells. Office of Scientific and Technical Information (OSTI), março de 1989. http://dx.doi.org/10.2172/6346849.
Texto completo da fonteRohatgi, A., A. W. Smith e J. Salami. Modelling and fabrication of high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), outubro de 1991. http://dx.doi.org/10.2172/10104501.
Texto completo da fonteHall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, S. M. Lampo, J. A. Rand, T. R. Ruffins e A. M. Barnett. Silicon-film{trademark} on ceramic solar cells. Final report. Office of Scientific and Technical Information (OSTI), fevereiro de 1993. http://dx.doi.org/10.2172/10135001.
Texto completo da fonteRand, J. A., A. M. Barnett e J. C. Checchi. Large-area Silicon-Film{trademark} panels and solar cells. Office of Scientific and Technical Information (OSTI), janeiro de 1997. http://dx.doi.org/10.2172/453487.
Texto completo da fonteAlbright, C. E., e D. O. Holte. Diffusion welding of electrical interconnects to silicon solar cells. Office of Scientific and Technical Information (OSTI), maio de 1989. http://dx.doi.org/10.2172/6300204.
Texto completo da fonte