Siga este link para ver outros tipos de publicações sobre o tema: Signal processing.

Artigos de revistas sobre o tema "Signal processing"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Signal processing".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Borawake, Prof Dr M. P. "Audio Signal Processing". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junho de 2022): 1495–96. http://dx.doi.org/10.22214/ijraset.2022.44063.

Texto completo da fonte
Resumo:
Abstract: Audio Signal Processing is also known as Digital Analog Conversion (DAC). Sound waves are the most common example of longitudinal waves. The speed of sound waves is a particular medium depends on the properties of that temperature and the medium. Sound waves travel through air when the air elements vibrate to produce changes in pressure and density along the direction of the wave’s motion. It transforms the Analog Signal into Digital Signals, and then converted Digital Signals is sent to the Devices. Which can be used in Various things., Such as audio signal, RADAR, speed processing, voice recognition, entertainment industry, and to find defected in machines using audio signals or frequencies. The signals pay important role in our day-to-day communication, perception of environment, and entertainment. A joint time-frequency (TF) approach would be better choice to effectively process this signal. The theory of signal processing and its application to audio was largely developed at Bell Labs in the mid-20th century. Claude Shannon and Harry Nyquist’s early work on communication theory and pulse-code modulation (PCM) laid the foundations for the field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sharma, Sushma, Hitesh Kumar e Charul Thareja. "Digital Signal Processing Over Analog Signal Processing". Journal of Advance Research in Electrical & Electronics Engineering (ISSN: 2208-2395) 1, n.º 2 (28 de fevereiro de 2014): 01–02. http://dx.doi.org/10.53555/nneee.v1i2.255.

Texto completo da fonte
Resumo:
This paper provides a survey of digital signal processing over analog signal processing. Initially digital signal processing is developed to replace limited application based analog signal processing (ASP) of high cost. This paper describes the comparison of analog signal processing (ASP) and digital signal processing, technology under digital signal processing , application of digital signal processing, new technology of digital signal processing (DSP). This paper also focuses on the future scope of digital signal processing (DSP).
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Smolarik, Lukas, Dusan Mudroncik e Lubos Ondriga. "ECG Signal Processing". Advanced Materials Research 749 (agosto de 2013): 394–400. http://dx.doi.org/10.4028/www.scientific.net/amr.749.394.

Texto completo da fonte
Resumo:
Electrocardiography (ECG) is a diagnostic method that allows sensing and record the electric activity of heart [. The measurement of electrical activity is used as a standard twelve-point system. At each of these leads to measure the useful signal and interference was measured. The intensity of interference depends on the artefacts (electrical lines, brum, motion artefacts, muscle, interference from the environment, etc.). For correct evaluation of measured signal there is a need to processing the measured signal to suitable form. At present, the use of electrocardiograms with sensors with contact scanning are difficult to set a time so we decided to use the principle of non-contact sensing. Such a device to measure the ECG was constructed under the project. The disadvantage of such devices is a problem with a high level of noise, which degrades a useful signal. The aim of this article is to pre-process the signals obtained from non-contact sensing. The contactless devices are powered from the network and battery. The electrodes were connected by way of Eithoven bipolar leads. Signals were pre-treated with suitable filters so that they are also appropriate for their subsequent analysis. In the filtration ECG signals was used as a method of linear (low pass filter, high pass, IIR (Infinite Impulse Response) peak, notch filter. The results of many signals clearly demonstrate removing noise in the ECG signals to the point that is also suitable for their analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf e Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals". Journal of Physics: Conference Series 2318, n.º 1 (1 de agosto de 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.

Texto completo da fonte
Resumo:
Abstract The brain signals can be converted to a command to control some external device using a brain-computer interface system. The unimodal BCI system has limitations like the compensation of the accuracy with the increase in the number of classes. In addition to this many of the acquisition systems are not robust for real-time application because of poor spatial or temporal resolution. To overcome this, a hybrid BCI technology that combines two acquisition systems has been introduced. In this work, we have discussed a preprocessing pipeline for enhancing brain signals acquired from fNIRS (functional Near Infrared Spectroscopy) and EEG (Electroencephalography). The data consists of brain signals for four tasks – Right/Left hand gripping and Right/Left arm raising. The EEG (brain activity) data were filtered using a bandpass filter to obtain the activity of mu (7-13 Hz) and beta (13-30 Hz) rhythm. The Oxy-haemoglobin and Deoxy-haemoglobin (HbO and HbR) concentration of the fNIRS signal was obtained with Modified Beer Lambert Law (MBLL). Both signals were filtered using a fifth-order Butterworth band pass filter and the performance of the filter is compared theoretically with the estimated signal-to-noise ratio. These results can be used further to improve feature extraction and classification accuracy of the signal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Minasian, R. A. "Photonic signal processing of microwave signals". IEEE Transactions on Microwave Theory and Techniques 54, n.º 2 (fevereiro de 2006): 832–46. http://dx.doi.org/10.1109/tmtt.2005.863060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lessard, Charles S. "Signal Processing of Random Physiological Signals". Synthesis Lectures on Biomedical Engineering 1, n.º 1 (janeiro de 2006): 1–232. http://dx.doi.org/10.2200/s00012ed1v01y200602bme001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Birdsall, Theodore G., Kurt Metzger e Matthew A. Dzieciuch. "Signals, signal processing, and general results". Journal of the Acoustical Society of America 96, n.º 4 (outubro de 1994): 2343–52. http://dx.doi.org/10.1121/1.410106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Afanasiev, D. S. "Digital Chirp Processing". LETI Transactions on Electrical Engineering & Computer Science 15, n.º 4 (2022): 44–48. http://dx.doi.org/10.32603/2071-8985-2022-15-4-44-48.

Texto completo da fonte
Resumo:
Algorithms for digital signal processing with linear frequency modulation LFM have been developed. A method for calibrating several chirp signals for their subsequent joint processing, an algorithm for shifting a signal in time, compensating for compression or stretching of a signal in time, and determining the start time of a signal are considered, digital signal processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

MONACU, Larisa, e Titus BĂLAN. "SDR SYSTEM FOR GNSS SIGNAL PROCESSING". Review of the Air Force Academy 16, n.º 3 (19 de dezembro de 2018): 77–84. http://dx.doi.org/10.19062/1842-9238.2018.16.3.9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dewhurst, David J. "Signal processing". Journal of the Acoustical Society of America 89, n.º 5 (maio de 1991): 2481. http://dx.doi.org/10.1121/1.400842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Katkovnik, V. "Signal Processing". Signal Processing 59, n.º 2 (junho de 1997): 251–52. http://dx.doi.org/10.1016/s0165-1684(97)89502-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Laguna, P. "Signal Processing". Yearbook of Medical Informatics 11, n.º 01 (agosto de 2002): 427–30. http://dx.doi.org/10.1055/s-0038-1638133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Erskine, R. L. "Signal processing". Chemometrics and Intelligent Laboratory Systems 2, n.º 1-3 (agosto de 1987): 6–8. http://dx.doi.org/10.1016/0169-7439(87)80079-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Xiaofeng, Lu, Li Zan e Cai Jueping. "Signal Processing". European Transactions on Telecommunications 20, n.º 4 (junho de 2009): 403–12. http://dx.doi.org/10.1002/ett.1296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Asada, Kohei. "HEADPHONE DEVICE, SIGNAL PROCESSING DEVICE, AND SIGNAL PROCESSING METHOD". Journal of the Acoustical Society of America 133, n.º 1 (2013): 605. http://dx.doi.org/10.1121/1.4774147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Maruko, Tsuguto, e Naotaka Saito. "ACOUSTIC SIGNAL PROCESSING APPARATUS AND ACOUSTIC SIGNAL PROCESSING METHOD". Journal of the Acoustical Society of America 132, n.º 1 (2012): 569. http://dx.doi.org/10.1121/1.4734253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Sakurai, Masaru. "Video Signal Processing LSI. Signal Processing LSIs for HDTV." Journal of the Institute of Television Engineers of Japan 48, n.º 1 (1994): 25–30. http://dx.doi.org/10.3169/itej1978.48.25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Venkatachalam, K. L., Joel E. Herbrandson e Samuel J. Asirvatham. "Signals and Signal Processing for the Electrophysiologist". Circulation: Arrhythmia and Electrophysiology 4, n.º 6 (dezembro de 2011): 965–73. http://dx.doi.org/10.1161/circep.111.964304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Venkatachalam, K. L., Joel E. Herbrandson e Samuel J. Asirvatham. "Signals and Signal Processing for the Electrophysiologist". Circulation: Arrhythmia and Electrophysiology 4, n.º 6 (dezembro de 2011): 974–81. http://dx.doi.org/10.1161/circep.111.964973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Lu, Jie, Naveen Verma e Niraj K. Jha. "Compressed Signal Processing on Nyquist-Sampled Signals". IEEE Transactions on Computers 65, n.º 11 (1 de novembro de 2016): 3293–303. http://dx.doi.org/10.1109/tc.2016.2532861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ask, Per. "Ultrasound imaging. Waves, signals and signal processing". Ultrasound in Medicine & Biology 28, n.º 3 (março de 2002): 401–2. http://dx.doi.org/10.1016/s0301-5629(01)00520-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Vosvrda, Miloslav S. "Discrete random signals and statistical signal processing". Automatica 29, n.º 6 (novembro de 1993): 1617. http://dx.doi.org/10.1016/0005-1098(93)90033-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Kale, Uma, e Edward Voigtman. "Signal processing of transient atomic absorption signals". Spectrochimica Acta Part B: Atomic Spectroscopy 50, n.º 12 (outubro de 1995): 1531–41. http://dx.doi.org/10.1016/0584-8547(95)01380-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

M, Sankar, Narendra Babu J, Swati S. Halunde e Maduri B. Mulik. "Brain Signal Processing: Analysis, Technologies and Application". Journal of Advanced Research in Dynamical and Control Systems 11, n.º 12 (20 de dezembro de 2019): 69–74. http://dx.doi.org/10.5373/jardcs/v11i12/20193213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Volić, Ismar. "Topological Methods in Signal Processing". B&H Electrical Engineering 14, s1 (1 de outubro de 2020): 14–25. http://dx.doi.org/10.2478/bhee-2020-0002.

Texto completo da fonte
Resumo:
Abstract This article gives an overview of the applications of algebraic topology methods in signal processing. We explain how the notions and invariants such as (co)chain complexes and (co)homology of simplicial complexes can be used to gain insight into higher-order interactions of signals. The discussion begins with some basic ideas in classical circuits, continues with signals over graphs and simplicial complexes, and culminates with an overview of sheaf theory and the connections between sheaf cohomology and signal processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

SAITO, Minoru. "Signal processing techniques." Journal of the Japan Society for Precision Engineering 54, n.º 12 (1988): 2233–37. http://dx.doi.org/10.2493/jjspe.54.2233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Ruiz, Luana, Luiz F. O. Chamon e Alejandro Ribeiro. "Graphon Signal Processing". IEEE Transactions on Signal Processing 69 (2021): 4961–76. http://dx.doi.org/10.1109/tsp.2021.3106857.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Dack, David. "Digital Signal Processing". Electronics and Power 31, n.º 1 (1985): 86. http://dx.doi.org/10.1049/ep.1985.0061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Tomaniac, A. P. "Signal processing forum". IEEE Signal Processing Magazine 15, n.º 1 (1998): 16. http://dx.doi.org/10.1109/79.647039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Strauss, W. "Digital signal processing". IEEE Signal Processing Magazine 17, n.º 2 (março de 2000): 52–56. http://dx.doi.org/10.1109/79.826412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Anastassiou, D. "Genomic signal processing". IEEE Signal Processing Magazine 18, n.º 4 (julho de 2001): 8–20. http://dx.doi.org/10.1109/79.939833.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Radic, Stojan. "Parametric Signal Processing". IEEE Journal of Selected Topics in Quantum Electronics 18, n.º 2 (março de 2012): 670–80. http://dx.doi.org/10.1109/jstqe.2011.2121896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kulkarni, Abhijit. "AUDIO SIGNAL PROCESSING". Journal of the Acoustical Society of America 133, n.º 4 (2013): 2514. http://dx.doi.org/10.1121/1.4800116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Wang, Wen. "Audio signal processing". Journal of the Acoustical Society of America 128, n.º 5 (2010): 3275. http://dx.doi.org/10.1121/1.3525338.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lawrence, Martin, e Michael Brown. "Optical Signal Processing". Physics Bulletin 37, n.º 11 (novembro de 1986): 458–60. http://dx.doi.org/10.1088/0031-9112/37/11/022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Fenderson, Bruce. "Cellular Signal Processing". Medicine & Science in Sports & Exercise 41, n.º 8 (agosto de 2009): 1686. http://dx.doi.org/10.1249/01.mss.0000323502.42316.28.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Long, D. "Array signal processing". IEEE Transactions on Acoustics, Speech, and Signal Processing 33, n.º 5 (outubro de 1985): 1346. http://dx.doi.org/10.1109/tassp.1985.1164669.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Morgan, D. "Adaptive signal processing". IEEE Transactions on Acoustics, Speech, and Signal Processing 34, n.º 4 (agosto de 1986): 1017–18. http://dx.doi.org/10.1109/tassp.1986.1164869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Ritchie, Simon. "Waveguide signal processing". Physics World 2, n.º 5 (maio de 1989): 21–22. http://dx.doi.org/10.1088/2058-7058/2/5/21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Brewster, R. L. "Adaptive Signal Processing". Electronics and Power 32, n.º 7 (1986): 545. http://dx.doi.org/10.1049/ep.1986.0314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Duncan, G. "Advanced Signal Processing". Electronics and Power 33, n.º 7 (1987): 469. http://dx.doi.org/10.1049/ep.1987.0286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Grant, P. M. "Multirate signal processing". Electronics & Communication Engineering Journal 8, n.º 1 (1 de fevereiro de 1996): 4–12. http://dx.doi.org/10.1049/ecej:19960102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

McBride, Sam. "Biomedical Signal Processing". Journal of Clinical Engineering 13, n.º 5 (setembro de 1988): 342–44. http://dx.doi.org/10.1097/00004669-198809000-00006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Meck, Warren H. "Postreinforcement signal processing." Journal of Experimental Psychology: Animal Behavior Processes 11, n.º 1 (1985): 52–70. http://dx.doi.org/10.1037/0097-7403.11.1.52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

PECEN, LADISLAV. "Electrical signal processing". International Journal of Electronics 73, n.º 5 (novembro de 1992): 1085–86. http://dx.doi.org/10.1080/00207219208925773.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Vainio, Olli. "Intelligent Signal Processing". Signal Processing 81, n.º 12 (dezembro de 2001): 2615–16. http://dx.doi.org/10.1016/s0165-1684(01)00152-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Astola, Jaakko, Edward Dougherty, Ilya Shmulevich e Ioan Tabus. "Genomic signal processing". Signal Processing 83, n.º 4 (abril de 2003): 691–94. http://dx.doi.org/10.1016/s0165-1684(02)00467-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Trojanowicz, Marek. "Signal Processing Algorithms". Analytica Chimica Acta 248, n.º 2 (agosto de 1991): 625–26. http://dx.doi.org/10.1016/s0003-2670(00)84686-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Duch, K. M. "Baseband signal processing". IEEE Network 5, n.º 6 (novembro de 1991): 39–43. http://dx.doi.org/10.1109/65.103809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Tilg, B. "Biomedical Signal Processing". Yearbook of Medical Informatics 12, n.º 01 (agosto de 2003): 445–47. http://dx.doi.org/10.1055/s-0038-1638168.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia