Siga este link para ver outros tipos de publicações sobre o tema: Signal processing.

Artigos de revistas sobre o tema "Signal processing"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Signal processing".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Borawake, Prof Dr M. P. "Audio Signal Processing." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (2022): 1495–96. http://dx.doi.org/10.22214/ijraset.2022.44063.

Texto completo da fonte
Resumo:
Abstract: Audio Signal Processing is also known as Digital Analog Conversion (DAC). Sound waves are the most common example of longitudinal waves. The speed of sound waves is a particular medium depends on the properties of that temperature and the medium. Sound waves travel through air when the air elements vibrate to produce changes in pressure and density along the direction of the wave’s motion. It transforms the Analog Signal into Digital Signals, and then converted Digital Signals is sent to the Devices. Which can be used in Various things., Such as audio signal, RADAR, speed processing,
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sharma, Sushma, Hitesh Kumar, and Charul Thareja. "Digital Signal Processing Over Analog Signal Processing." Journal of Advance Research in Electrical & Electronics Engineering (ISSN: 2208-2395) 1, no. 2 (2014): 01–02. http://dx.doi.org/10.53555/nneee.v1i2.255.

Texto completo da fonte
Resumo:
This paper provides a survey of digital signal processing over analog signal processing. Initially digital signal processing is developed to replace limited application based analog signal processing (ASP) of high cost. This paper describes the comparison of analog signal processing (ASP) and digital signal processing, technology under digital signal processing , application of digital signal processing, new technology of digital signal processing (DSP). This paper also focuses on the future scope of digital signal processing (DSP).
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Smolarik, Lukas, Dusan Mudroncik, and Lubos Ondriga. "ECG Signal Processing." Advanced Materials Research 749 (August 2013): 394–400. http://dx.doi.org/10.4028/www.scientific.net/amr.749.394.

Texto completo da fonte
Resumo:
Electrocardiography (ECG) is a diagnostic method that allows sensing and record the electric activity of heart [. The measurement of electrical activity is used as a standard twelve-point system. At each of these leads to measure the useful signal and interference was measured. The intensity of interference depends on the artefacts (electrical lines, brum, motion artefacts, muscle, interference from the environment, etc.). For correct evaluation of measured signal there is a need to processing the measured signal to suitable form. At present, the use of electrocardiograms with sensors with con
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf, and Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals." Journal of Physics: Conference Series 2318, no. 1 (2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.

Texto completo da fonte
Resumo:
Abstract The brain signals can be converted to a command to control some external device using a brain-computer interface system. The unimodal BCI system has limitations like the compensation of the accuracy with the increase in the number of classes. In addition to this many of the acquisition systems are not robust for real-time application because of poor spatial or temporal resolution. To overcome this, a hybrid BCI technology that combines two acquisition systems has been introduced. In this work, we have discussed a preprocessing pipeline for enhancing brain signals acquired from fNIRS (
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Minasian, R. A. "Photonic signal processing of microwave signals." IEEE Transactions on Microwave Theory and Techniques 54, no. 2 (2006): 832–46. http://dx.doi.org/10.1109/tmtt.2005.863060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lessard, Charles S. "Signal Processing of Random Physiological Signals." Synthesis Lectures on Biomedical Engineering 1, no. 1 (2006): 1–232. http://dx.doi.org/10.2200/s00012ed1v01y200602bme001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Birdsall, Theodore G., Kurt Metzger, and Matthew A. Dzieciuch. "Signals, signal processing, and general results." Journal of the Acoustical Society of America 96, no. 4 (1994): 2343–52. http://dx.doi.org/10.1121/1.410106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Afanasiev, D. S. "Digital Chirp Processing." LETI Transactions on Electrical Engineering & Computer Science 15, no. 4 (2022): 44–48. http://dx.doi.org/10.32603/2071-8985-2022-15-4-44-48.

Texto completo da fonte
Resumo:
Algorithms for digital signal processing with linear frequency modulation LFM have been developed. A method for calibrating several chirp signals for their subsequent joint processing, an algorithm for shifting a signal in time, compensating for compression or stretching of a signal in time, and determining the start time of a signal are considered, digital signal processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dewhurst, David J. "Signal processing." Journal of the Acoustical Society of America 89, no. 5 (1991): 2481. http://dx.doi.org/10.1121/1.400842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Katkovnik, V. "Signal Processing." Signal Processing 59, no. 2 (1997): 251–52. http://dx.doi.org/10.1016/s0165-1684(97)89502-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Laguna, P. "Signal Processing." Yearbook of Medical Informatics 11, no. 01 (2002): 427–30. http://dx.doi.org/10.1055/s-0038-1638133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Erskine, R. L. "Signal processing." Chemometrics and Intelligent Laboratory Systems 2, no. 1-3 (1987): 6–8. http://dx.doi.org/10.1016/0169-7439(87)80079-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Xiaofeng, Lu, Li Zan, and Cai Jueping. "Signal Processing." European Transactions on Telecommunications 20, no. 4 (2009): 403–12. http://dx.doi.org/10.1002/ett.1296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

MONACU, Larisa, and Titus BĂLAN. "SDR SYSTEM FOR GNSS SIGNAL PROCESSING." Review of the Air Force Academy 16, no. 3 (2018): 77–84. http://dx.doi.org/10.19062/1842-9238.2018.16.3.9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Venkatachalam, K. L., Joel E. Herbrandson, and Samuel J. Asirvatham. "Signals and Signal Processing for the Electrophysiologist." Circulation: Arrhythmia and Electrophysiology 4, no. 6 (2011): 965–73. http://dx.doi.org/10.1161/circep.111.964304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Venkatachalam, K. L., Joel E. Herbrandson, and Samuel J. Asirvatham. "Signals and Signal Processing for the Electrophysiologist." Circulation: Arrhythmia and Electrophysiology 4, no. 6 (2011): 974–81. http://dx.doi.org/10.1161/circep.111.964973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lu, Jie, Naveen Verma, and Niraj K. Jha. "Compressed Signal Processing on Nyquist-Sampled Signals." IEEE Transactions on Computers 65, no. 11 (2016): 3293–303. http://dx.doi.org/10.1109/tc.2016.2532861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ask, Per. "Ultrasound imaging. Waves, signals and signal processing." Ultrasound in Medicine & Biology 28, no. 3 (2002): 401–2. http://dx.doi.org/10.1016/s0301-5629(01)00520-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Vosvrda, Miloslav S. "Discrete random signals and statistical signal processing." Automatica 29, no. 6 (1993): 1617. http://dx.doi.org/10.1016/0005-1098(93)90033-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kale, Uma, and Edward Voigtman. "Signal processing of transient atomic absorption signals." Spectrochimica Acta Part B: Atomic Spectroscopy 50, no. 12 (1995): 1531–41. http://dx.doi.org/10.1016/0584-8547(95)01380-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Asada, Kohei. "HEADPHONE DEVICE, SIGNAL PROCESSING DEVICE, AND SIGNAL PROCESSING METHOD." Journal of the Acoustical Society of America 133, no. 1 (2013): 605. http://dx.doi.org/10.1121/1.4774147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Maruko, Tsuguto, and Naotaka Saito. "ACOUSTIC SIGNAL PROCESSING APPARATUS AND ACOUSTIC SIGNAL PROCESSING METHOD." Journal of the Acoustical Society of America 132, no. 1 (2012): 569. http://dx.doi.org/10.1121/1.4734253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Sakurai, Masaru. "Video Signal Processing LSI. Signal Processing LSIs for HDTV." Journal of the Institute of Television Engineers of Japan 48, no. 1 (1994): 25–30. http://dx.doi.org/10.3169/itej1978.48.25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Volić, Ismar. "Topological Methods in Signal Processing." B&H Electrical Engineering 14, s1 (2020): 14–25. http://dx.doi.org/10.2478/bhee-2020-0002.

Texto completo da fonte
Resumo:
Abstract This article gives an overview of the applications of algebraic topology methods in signal processing. We explain how the notions and invariants such as (co)chain complexes and (co)homology of simplicial complexes can be used to gain insight into higher-order interactions of signals. The discussion begins with some basic ideas in classical circuits, continues with signals over graphs and simplicial complexes, and culminates with an overview of sheaf theory and the connections between sheaf cohomology and signal processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

M, Sankar, Narendra Babu J, Swati S. Halunde, and Maduri B. Mulik. "Brain Signal Processing: Analysis, Technologies and Application." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12 (2019): 69–74. http://dx.doi.org/10.5373/jardcs/v11i12/20193213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Zou, JinFeng, Yi-an Cui, and Jing Xie. "Self-potential signal processing based on NMF." Journal of Physics: Conference Series 2895, no. 1 (2024): 012023. https://doi.org/10.1088/1742-6596/2895/1/012023.

Texto completo da fonte
Resumo:
Abstract In recent years, new algorithms have been continuously applied in the field of geophysical data processing, all of which have achieved good results. However, there is currently no dedicated signal separation method for self-potential field signal processing. In this paper, we propose a self-potential signal separation algorithm based on non-negative matrix factorization (NMF) to perform blind source signal separation. We aim to separate different self-potential signals from the collected mixed signals, laying the foundation for subsequent work such as feature recognition. We utilized
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Roule, Petr, Ondřej Jakubov, Pavel Kovář, Petr Kařmařík, and František Vejražka. "Gnss Signal Processing in Gpu." Artificial Satellites 48, no. 2 (2013): 51–61. http://dx.doi.org/10.2478/arsa-2013-0005.

Texto completo da fonte
Resumo:
ABSTRACT Signal processing of the global navigation satellite systems (GNSS) is a computationally demanding task due to the wide bandwidth of the signals and their complicated modulation schemes. The classical GNSS receivers therefore utilize tailored digital signal processors (DSP) not being flexible in nature. Fortunately, the up-to-date parallel processors or graphical processing units (GPUs) dispose sufficient computational power for processing of not only relatively narrow band GPS L1 C/A signal but also the modernized GPS, GLONASS, Galileo and COMPASS signals. The performance improvement
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

SAITO, Minoru. "Signal processing techniques." Journal of the Japan Society for Precision Engineering 54, no. 12 (1988): 2233–37. http://dx.doi.org/10.2493/jjspe.54.2233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ruiz, Luana, Luiz F. O. Chamon, and Alejandro Ribeiro. "Graphon Signal Processing." IEEE Transactions on Signal Processing 69 (2021): 4961–76. http://dx.doi.org/10.1109/tsp.2021.3106857.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Dack, David. "Digital Signal Processing." Electronics and Power 31, no. 1 (1985): 86. http://dx.doi.org/10.1049/ep.1985.0061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Tomaniac, A. P. "Signal processing forum." IEEE Signal Processing Magazine 15, no. 1 (1998): 16. http://dx.doi.org/10.1109/79.647039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Strauss, W. "Digital signal processing." IEEE Signal Processing Magazine 17, no. 2 (2000): 52–56. http://dx.doi.org/10.1109/79.826412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Anastassiou, D. "Genomic signal processing." IEEE Signal Processing Magazine 18, no. 4 (2001): 8–20. http://dx.doi.org/10.1109/79.939833.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Radic, Stojan. "Parametric Signal Processing." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (2012): 670–80. http://dx.doi.org/10.1109/jstqe.2011.2121896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kulkarni, Abhijit. "AUDIO SIGNAL PROCESSING." Journal of the Acoustical Society of America 133, no. 4 (2013): 2514. http://dx.doi.org/10.1121/1.4800116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Wang, Wen. "Audio signal processing." Journal of the Acoustical Society of America 128, no. 5 (2010): 3275. http://dx.doi.org/10.1121/1.3525338.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lawrence, Martin, and Michael Brown. "Optical Signal Processing." Physics Bulletin 37, no. 11 (1986): 458–60. http://dx.doi.org/10.1088/0031-9112/37/11/022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Fenderson, Bruce. "Cellular Signal Processing." Medicine & Science in Sports & Exercise 41, no. 8 (2009): 1686. http://dx.doi.org/10.1249/01.mss.0000323502.42316.28.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Long, D. "Array signal processing." IEEE Transactions on Acoustics, Speech, and Signal Processing 33, no. 5 (1985): 1346. http://dx.doi.org/10.1109/tassp.1985.1164669.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Morgan, D. "Adaptive signal processing." IEEE Transactions on Acoustics, Speech, and Signal Processing 34, no. 4 (1986): 1017–18. http://dx.doi.org/10.1109/tassp.1986.1164869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Ritchie, Simon. "Waveguide signal processing." Physics World 2, no. 5 (1989): 21–22. http://dx.doi.org/10.1088/2058-7058/2/5/21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Brewster, R. L. "Adaptive Signal Processing." Electronics and Power 32, no. 7 (1986): 545. http://dx.doi.org/10.1049/ep.1986.0314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Duncan, G. "Advanced Signal Processing." Electronics and Power 33, no. 7 (1987): 469. http://dx.doi.org/10.1049/ep.1987.0286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Grant, P. M. "Multirate signal processing." Electronics & Communication Engineering Journal 8, no. 1 (1996): 4–12. http://dx.doi.org/10.1049/ecej:19960102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

McBride, Sam. "Biomedical Signal Processing." Journal of Clinical Engineering 13, no. 5 (1988): 342–44. http://dx.doi.org/10.1097/00004669-198809000-00006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Meck, Warren H. "Postreinforcement signal processing." Journal of Experimental Psychology: Animal Behavior Processes 11, no. 1 (1985): 52–70. http://dx.doi.org/10.1037/0097-7403.11.1.52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

PECEN, LADISLAV. "Electrical signal processing." International Journal of Electronics 73, no. 5 (1992): 1085–86. http://dx.doi.org/10.1080/00207219208925773.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Vainio, Olli. "Intelligent Signal Processing." Signal Processing 81, no. 12 (2001): 2615–16. http://dx.doi.org/10.1016/s0165-1684(01)00152-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Astola, Jaakko, Edward Dougherty, Ilya Shmulevich, and Ioan Tabus. "Genomic signal processing." Signal Processing 83, no. 4 (2003): 691–94. http://dx.doi.org/10.1016/s0165-1684(02)00467-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Trojanowicz, Marek. "Signal Processing Algorithms." Analytica Chimica Acta 248, no. 2 (1991): 625–26. http://dx.doi.org/10.1016/s0003-2670(00)84686-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!