Artigos de revistas sobre o tema "Shear flow effects"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Shear flow effects".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kuroda, Mitsutoshi. "Effects of Crystallographic Texture on Plastic Flow Localization". Key Engineering Materials 340-341 (junho de 2007): 211–16. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.211.
Texto completo da fonteSmith, Ronald. "Buoyancy effects in vertical shear dispersion". Journal of Fluid Mechanics 242 (setembro de 1992): 371–86. http://dx.doi.org/10.1017/s0022112092002416.
Texto completo da fonteChiu, J. J., D. L. Wang, S. Chien, R. Skalak e S. Usami. "Effects of Disturbed Flow On Endothelial Cells". Journal of Biomechanical Engineering 120, n.º 1 (1 de fevereiro de 1998): 2–8. http://dx.doi.org/10.1115/1.2834303.
Texto completo da fonteMurata, T., e T. W. Secomb. "Effects of shear rate on rouleau formation in simple shear flow". Biorheology 25, n.º 1-2 (1 de abril de 1988): 113–22. http://dx.doi.org/10.3233/bir-1988-251-218.
Texto completo da fonteConway, Daniel E., Marcie R. Williams, Suzanne G. Eskin e Larry V. McIntire. "Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal". American Journal of Physiology-Heart and Circulatory Physiology 298, n.º 2 (fevereiro de 2010): H367—H374. http://dx.doi.org/10.1152/ajpheart.00565.2009.
Texto completo da fonteToppaladoddi, S., e J. S. Wettlaufer. "The combined effects of shear and buoyancy on phase boundary stability". Journal of Fluid Mechanics 868 (17 de abril de 2019): 648–65. http://dx.doi.org/10.1017/jfm.2019.153.
Texto completo da fonteChen, Y. C., Y. Q. Qin, G. Y. Sun, G. Dong, Y. Xiao e Z. Lin. "Effects of radial electric field on kinetic ballooning mode in toroidal plasma". Physics of Plasmas 30, n.º 2 (fevereiro de 2023): 022302. http://dx.doi.org/10.1063/5.0131294.
Texto completo da fontePopova, A. V., O. V. Sheremetyeva, M. E. Bobrova e A. S. Perezhogin. "Non-local deformation effects in shear flows". Nonlinear Processes in Geophysics Discussions 2, n.º 1 (21 de janeiro de 2015): 69–96. http://dx.doi.org/10.5194/npgd-2-69-2015.
Texto completo da fonteAkao, Takumi, Tomoaki Watanabe e Koji Nagata. "Vertical confinement effects on a fully developed turbulent shear layer". Physics of Fluids 34, n.º 5 (maio de 2022): 055129. http://dx.doi.org/10.1063/5.0090686.
Texto completo da fonteAyukawa, K., J. Ochi, G. Kawahara e T. Hirao. "Effects of shear rate on the flow around a square cylinder in a uniform shear flow". Journal of Wind Engineering and Industrial Aerodynamics 50 (dezembro de 1993): 97–106. http://dx.doi.org/10.1016/0167-6105(93)90065-v.
Texto completo da fonteQiu, Wei-Ping, Qinghua Hu, Nazareno Paolocci, Roy C. Ziegelstein e David A. Kass. "Differential effects of pulsatile versus steady flow on coronary endothelial membrane potential". American Journal of Physiology-Heart and Circulatory Physiology 285, n.º 1 (julho de 2003): H341—H346. http://dx.doi.org/10.1152/ajpheart.01072.2002.
Texto completo da fonteHaury, Loren R., Hidekatsu Yamazaki e Eric C. Itsweire. "Effects of turbulent shear flow on zooplankton distribution". Deep Sea Research Part A. Oceanographic Research Papers 37, n.º 3 (março de 1990): 447–61. http://dx.doi.org/10.1016/0198-0149(90)90019-r.
Texto completo da fonteTanaka, Kentaro G., Masaki Fujimoto e Iku Shinohara. "Physics of Magnetopause Reconnection: A Study of the Combined Effects of Density Asymmetry, Velocity Shear, and Guide Field". International Journal of Geophysics 2010 (2010): 1–17. http://dx.doi.org/10.1155/2010/202583.
Texto completo da fonteKim, Dokyum, Yongsam Kim e Sookkyung Lim. "Effects of swimming environment on bacterial motility". Physics of Fluids 34, n.º 3 (março de 2022): 031907. http://dx.doi.org/10.1063/5.0082768.
Texto completo da fonteJain, V. K., e B. K. Gupta. "Effects of Accelerated Tests on Shear Flow Stress in Machining". Journal of Engineering for Industry 109, n.º 3 (1 de agosto de 1987): 206–12. http://dx.doi.org/10.1115/1.3187120.
Texto completo da fonteLee, M. "PP/LCP composites: effects of shear flow, extensional flow and nanofillers". Composites Science and Technology 63, n.º 13 (outubro de 2003): 1921–29. http://dx.doi.org/10.1016/s0266-3538(03)00156-8.
Texto completo da fonteVarpe, Mahesh, e A. M. Pradeep. "Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade". International Journal of Rotating Machinery 2013 (2013): 1–22. http://dx.doi.org/10.1155/2013/490543.
Texto completo da fonteLee, Hong Woo, e Kyung Seok Oh. "Effects of Non-Associated Flow Rule on AHSS Shear Fracture". Key Engineering Materials 725 (dezembro de 2016): 465–70. http://dx.doi.org/10.4028/www.scientific.net/kem.725.465.
Texto completo da fonteDacus, Michael, Mahmud Kamal Raihan, Micah Baghdady, Chase Gabbard, Sen Wu, Joshua B. Bostwick, Yongxin Song e Xiangchun Xuan. "Surfactant effects on microfluidic extensional flow of water and polymer solutions". Physics of Fluids 34, n.º 3 (março de 2022): 032006. http://dx.doi.org/10.1063/5.0085967.
Texto completo da fonteAguirre, Roberto C., Jennifer C. Nathman e Haris C. Catrakis. "Flow Geometry Effects on the Turbulent Mixing Efficiency". Journal of Fluids Engineering 128, n.º 4 (9 de fevereiro de 2006): 874–79. http://dx.doi.org/10.1115/1.2201696.
Texto completo da fonteBryan, Robert M., Sean P. Marrelli, Marie L. Steenberg, Lisa A. Schildmeyer e T. David Johnson. "Effects of luminal shear stress on cerebral arteries and arterioles". American Journal of Physiology-Heart and Circulatory Physiology 280, n.º 5 (1 de maio de 2001): H2011—H2022. http://dx.doi.org/10.1152/ajpheart.2001.280.5.h2011.
Texto completo da fonteROACH, D. C., e A. G. L. HOLLOWAY. "Combined effects of flow curvature and rotation on uniformly sheared turbulence". Journal of Fluid Mechanics 628 (1 de junho de 2009): 371–94. http://dx.doi.org/10.1017/s0022112009006296.
Texto completo da fonteMoore,, James E., Erlend S. Weydahl e Aland Santamarina. "Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries". Journal of Biomechanical Engineering 123, n.º 2 (1 de novembro de 2000): 129–33. http://dx.doi.org/10.1115/1.1351806.
Texto completo da fontePrakash, Om, O. D. Makinde, S. P. Singh, Nidhi Jain e Devendra Kumar. "Effects of stenoses on non-Newtonian flow of blood in blood vessels". International Journal of Biomathematics 08, n.º 01 (janeiro de 2015): 1550010. http://dx.doi.org/10.1142/s1793524515500102.
Texto completo da fonteSUBRAMANIAN, G., e DONALD L. KOCH. "Inertial effects on fibre motion in simple shear flow". Journal of Fluid Mechanics 535 (5 de julho de 2005): 383–414. http://dx.doi.org/10.1017/s0022112005004829.
Texto completo da fonteSu, Song-Kai, e Chun-Liang Lai. "Interfacial shear-stress effects on transient capillary wedge flow". Physics of Fluids 16, n.º 6 (junho de 2004): 2033–43. http://dx.doi.org/10.1063/1.1714791.
Texto completo da fonteAmiri, K., M. J. Cervantes e M. Raisee. "Effects of flow unsteadiness on the wall shear stress". IOP Conference Series: Earth and Environmental Science 15, n.º 6 (26 de novembro de 2012): 062033. http://dx.doi.org/10.1088/1755-1315/15/6/062033.
Texto completo da fonteTsai, Wu-ting. "Effects of surfactant on free-surface turbulent shear flow". International Communications in Heat and Mass Transfer 23, n.º 8 (dezembro de 1996): 1087–95. http://dx.doi.org/10.1016/s0735-1933(96)00090-5.
Texto completo da fonteRey, A. D. "Analysis of Shear Flow Effects on Liquid Crystalline Textures". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 225, n.º 1 (fevereiro de 1993): 313–35. http://dx.doi.org/10.1080/10587259308036237.
Texto completo da fonteFülöp, T., Peter J. Catto e P. Helander. "Neutral diffusion and anomalous effects on ion flow shear". Physics of Plasmas 5, n.º 9 (setembro de 1998): 3398–401. http://dx.doi.org/10.1063/1.873053.
Texto completo da fonteDintzis, F. R., e E. B. Bagley. "Shear-thickening and transient flow effects in starch solutions". Journal of Applied Polymer Science 56, n.º 5 (2 de maio de 1995): 637–40. http://dx.doi.org/10.1002/app.1995.070560513.
Texto completo da fonteBove, Lucia, e Maria Rossella Nobile. "Shear flow effects on polymer melts crystallization: kinetics features". Macromolecular Symposia 180, n.º 1 (março de 2002): 169–80. http://dx.doi.org/10.1002/1521-3900(200203)180:1<169::aid-masy169>3.0.co;2-a.
Texto completo da fonteThompson, R. L., e P. R. Souza Mendes. "AN EXPLICIT CONSTITUTIVE EQUATION FOR PLANE AND AXISYMMETRIC STEADY FLOWS WITH VISCOELASTIC EFFECTS". Revista de Engenharia Térmica 3, n.º 2 (31 de dezembro de 2004): 134. http://dx.doi.org/10.5380/reterm.v3i2.3535.
Texto completo da fonteBlaisdell, G. A., N. N. Mansour e W. C. Reynolds. "Compressibility effects on the growth and structure of homogeneous turbulent shear flow". Journal of Fluid Mechanics 256 (novembro de 1993): 443–85. http://dx.doi.org/10.1017/s0022112093002848.
Texto completo da fonteZhao, Hanqing, Jing Yan, Saiyu Yuan, Jiefu Liu e Jinyu Zheng. "Effects of Submerged Vegetation Density on Turbulent Flow Characteristics in an Open Channel". Water 11, n.º 10 (16 de outubro de 2019): 2154. http://dx.doi.org/10.3390/w11102154.
Texto completo da fonteErvin, E. A., e G. Tryggvason. "The Rise of Bubbles in a Vertical Shear Flow". Journal of Fluids Engineering 119, n.º 2 (1 de junho de 1997): 443–49. http://dx.doi.org/10.1115/1.2819153.
Texto completo da fonteRamadan, K., e Iskander Tlili. "Shear work, viscous dissipation and axial conduction effects on microchannel heat transfer with a constant wall temperature". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, n.º 14 (29 de julho de 2015): 2496–507. http://dx.doi.org/10.1177/0954406215598799.
Texto completo da fonteAsakawa, Koji, e Takeji Hashimoto. "Shear‐flow effects on self‐assembly of semidilute solutions of off‐critical polymer mixtures: Shear‐hysteresis effects". Journal of Chemical Physics 105, n.º 12 (22 de setembro de 1996): 5216–23. http://dx.doi.org/10.1063/1.472364.
Texto completo da fonteBoldock, Luke, Amanda Inzoli, Silvia Bonardelli, Sarah Hsiao, Alberto Marzo, Andrew Narracott, Julian Gunn et al. "Integrating particle tracking with computational fluid dynamics to assess haemodynamic perturbation by coronary artery stents". PLOS ONE 17, n.º 7 (28 de julho de 2022): e0271469. http://dx.doi.org/10.1371/journal.pone.0271469.
Texto completo da fonteOuriev, Boris. "Rheology and Rheometry of Aluminum Alloys: Influence of Shear and Vibration on Aluminum Flow Properties". Solid State Phenomena 116-117 (outubro de 2006): 558–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.116-117.558.
Texto completo da fonteBai, Tao, Qingzhen Yang e Jian Liu. "Numerical Study of the Purge Flow’s Effect on the Loss Mechanism of the Blocking and Shear Effects". Processes 11, n.º 1 (26 de dezembro de 2022): 50. http://dx.doi.org/10.3390/pr11010050.
Texto completo da fonteHaney, Sean, Baylor Fox-Kemper, Keith Julien e Adrean Webb. "Symmetric and Geostrophic Instabilities in the Wave-Forced Ocean Mixed Layer". Journal of Physical Oceanography 45, n.º 12 (dezembro de 2015): 3033–56. http://dx.doi.org/10.1175/jpo-d-15-0044.1.
Texto completo da fonteAhmad, N., E. Fouad e F. Ahmad. "Effect of Shear Flow on Crystallization of Sydiotactic Polypropylene/Clay Composites". Engineering, Technology & Applied Science Research 8, n.º 4 (18 de agosto de 2018): 3108–12. http://dx.doi.org/10.48084/etasr.2079.
Texto completo da fonteMiyanaga, Norifumi, Mitsumi Nihei e Jun Tomioka. "Effects of Flow Properties of Lithium Soap Greases on Bearing Torque". Key Engineering Materials 823 (setembro de 2019): 123–27. http://dx.doi.org/10.4028/www.scientific.net/kem.823.123.
Texto completo da fonteJeyakumar, Manickaraj, e Sumanth Shankar. "Rheology of Liquid Al, Zn and Zn-7wt%Al Systems". Materials Science Forum 690 (junho de 2011): 226–29. http://dx.doi.org/10.4028/www.scientific.net/msf.690.226.
Texto completo da fonteTremblay, Joshua C., Arman S. Grewal e Kyra E. Pyke. "Examining the acute effects of retrograde versus low mean shear rate on flow-mediated dilation". Journal of Applied Physiology 126, n.º 5 (1 de maio de 2019): 1335–42. http://dx.doi.org/10.1152/japplphysiol.01065.2018.
Texto completo da fonteHuang, Yu, Yi’an Wang e Suran Wang. "Effects of Crushing Characteristics on Rheological Characteristics of Particle Systems". Water 14, n.º 4 (11 de fevereiro de 2022): 532. http://dx.doi.org/10.3390/w14040532.
Texto completo da fonteSUGIOKA, KEN-ICHI, e SATORU KOMORI. "Drag and lift forces acting on a spherical gas bubble in homogeneous shear liquid flow". Journal of Fluid Mechanics 629 (15 de junho de 2009): 173–93. http://dx.doi.org/10.1017/s002211200900651x.
Texto completo da fonteChiu, Jeng-Jiann, e Shu Chien. "Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives". Physiological Reviews 91, n.º 1 (janeiro de 2011): 327–87. http://dx.doi.org/10.1152/physrev.00047.2009.
Texto completo da fonteWein, Ondřej. "Slip effects in oscillatory flow of viscoelastic liquids". Collection of Czechoslovak Chemical Communications 50, n.º 11 (1985): 2558–69. http://dx.doi.org/10.1135/cccc19852558.
Texto completo da fonte