Literatura científica selecionada sobre o tema "Shallow water systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Shallow water systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Shallow water systems"
Clarkson, Peter A., e Thomas J. Priestley. "Shallow Water Wave Systems". Studies in Applied Mathematics 101, n.º 4 (novembro de 1998): 389–432. http://dx.doi.org/10.1111/1467-9590.00099.
Texto completo da fonteSaxena, Atanu Basu, N. K. "A Review of Shallow-Water Mapping Systems". Marine Geodesy 22, n.º 4 (outubro de 1999): 249–57. http://dx.doi.org/10.1080/014904199273380.
Texto completo da fonteBrowning, G. L., e H.-O. Kreiss. "Reduced Systems for the Shallow Water Equations". Journal of the Atmospheric Sciences 44, n.º 19 (outubro de 1987): 2813–22. http://dx.doi.org/10.1175/1520-0469(1987)044<2813:rsftsw>2.0.co;2.
Texto completo da fonteIlles, Ladislav, Tomas Kalina, Martin Jurkovic e Vladimir Luptak. "Distributed Propulsion Systems for Shallow Draft Vessels". Journal of Marine Science and Engineering 8, n.º 9 (29 de agosto de 2020): 667. http://dx.doi.org/10.3390/jmse8090667.
Texto completo da fonteKorpusov, M. O., e E. V. Yushkov. "Solution blowup for systems of shallow-water equations". Theoretical and Mathematical Physics 177, n.º 2 (novembro de 2013): 1505–14. http://dx.doi.org/10.1007/s11232-013-0119-9.
Texto completo da fonteSangapate, P. "Adaptive Control and Synchronization of the Shallow Water Model". Mathematical Problems in Engineering 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/529251.
Texto completo da fonteHu, Qiaoyi, Zhixin Wu e Yumei Sun. "Liouville theorems for periodic two-component shallow water systems". Discrete & Continuous Dynamical Systems - A 38, n.º 6 (2018): 3085–97. http://dx.doi.org/10.3934/dcds.2018134.
Texto completo da fonteBranco, Brett, Thomas Torgersen, John R. Bean, Gary Grenier e Dennis Arbige. "A new water column profiler for shallow aquatic systems". Limnology and Oceanography: Methods 3, n.º 3 (março de 2005): 190–202. http://dx.doi.org/10.4319/lom.2005.3.190.
Texto completo da fonteDidenkulova, Ira, e Efim Pelinovsky. "Rogue waves in nonlinear hyperbolic systems (shallow-water framework)". Nonlinearity 24, n.º 3 (25 de janeiro de 2011): R1—R18. http://dx.doi.org/10.1088/0951-7715/24/3/r01.
Texto completo da fontePivnev, P. P., A. P. Voloshchenko e S. P. Tarasov. "Monitoring of Bioresources in Shallow Water by Parametric Systems". IOP Conference Series: Earth and Environmental Science 459 (15 de abril de 2020): 042089. http://dx.doi.org/10.1088/1755-1315/459/4/042089.
Texto completo da fonteTeses / dissertações sobre o assunto "Shallow water systems"
Godin, André. "The calibration of shallow water multibeam echo-sounding systems". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23800.pdf.
Texto completo da fonteDing, Xiaoliang. "Numberical solution of the shallow-water equations on distributed memory systems". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0006/MQ40742.pdf.
Texto completo da fonteAkponasa, Gladys Aruore. "Solution of the contravariant shallow water equations using boundary-fitted coordinate systems". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314835.
Texto completo da fonteWinter, Thomas A. "Examination of time-reversal acoustic application to shallow water active sonar systems". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA378874.
Texto completo da fonteDudzinski, Michael [Verfasser]. "Well-Balanced Bicharacteristic-Based Finite Volume Schemes for Multilayer Shallow Water Systems / Michael Dudzinski". München : Verlag Dr. Hut, 2014. http://d-nb.info/106456058X/34.
Texto completo da fonteKneis, David. "A water quality model for shallow river lake systems and its application in river basin management". Phd thesis, [S.l.] : [s.n.], 2007. http://opus.kobv.de/ubp/volltexte/2007/1464.
Texto completo da fonteAmour, Frédéric. "3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studies". Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6662/.
Texto completo da fonteDas Modellieren von geologischen Aufschlüssen liegt der Schnittstelle zwischen zwei geo-logischen Teildisziplinen, der Sedimentologie und der geologischen Modellierung. Hierbei werden geologische Heterogenitäten untersucht und simuliert, welche im Aufschluss beobachtet wurden. Während der letzten Jahre haben sich die Werkzeuge und die Technik der Modellierung stetig weiter-entwickelt. Parallel dazu hat die Untersuchung der phanerozoischen Karbonatablagerungen ihren Fokus auf gemeinsamen Vorkommen von zufälligen Faziesverteilungen in beiden Ablagerungs-gebieten. Obwohl beide Teildisziplinen durch die Aufschlussmodellierung eigentlich verbunden sind, wurden ihre jeweiligen Vorteile in der Literatur nicht miteinander verbunden, um so eine Verbesserung ähnlicher Studien zu erreichen. Die vorliegende Studie überprüft erneut die Modellierungsstrategie, angepasst an die Simulation von Flachwasser-Karbonat-Systemen und basierend auf einer engen Beziehung zwischen Sedimentologie und Modellierung. Die vorliegende Arbeit behandelt erstmals die Evaluierung der drei am häufigsten verwendeten Algorithmen „Truncated Gaussian Simulation (TGSim)“, „Sequential Indicator Simulation (SISim)“ und „Indicator Kriging (IK)“, um sie visuell und quantitativ mit dem entsprechenden Aufschluss zu vergleichen. Die Ergebnisse zeigen, dass die Heterogenität von Karbonatgesteinen nicht komplett mit nur einem Algorithmus simuliert werden kann. Die Eigenschaften jedes einzelnen Algorithmus beinhalten Vor- und Nachteile, sodass kein Algorithmus alle Beobachtungen aus dem Aufschluss widerspiegelt. Die zwei Endglieder im Spektrum der Ablagerungsbedingungen von Karbonaten, eine flachwinklige, jurassische Karbonat-Rampe (Hoher Atlas, Marokko) und eine isolierte, triassische Plattform (Dolomiten, Italien), wurden untersucht, um einen kompletten Überblick über die verschiedenen Heterogenitäten in Flachwasser-Karbonat- Systemen zu erhalten. Sedimentologische und statistische Analysen wurden für die verschiedenen Typen, Morphologien, Verteilungen und Assoziationen von Karbonatablagerungen durchgeführt und mit paläogeografischen Rekonstruktionen kombiniert und zeigen ähnliche Ergebnisse. Im Beckenmaßstab zeigen die Faziesassoziationen, bestehend aus Fazieszonen mit ähnlichen Ablagerungsbedingungen, einen linearen und kontinuierlichen Übergang zwischen den einzelnen Ablagerungsbereichen. Im Gegensatz dazu zeigt für einzelne Lithofaziestypen im Maßstab einzelner Schichten eine mosaikartige Verteilung, bestehend aus einer Anordnung räumlich unabhängiger Lithofazieszonen entlang des Ablagerungsprofils. Das Ansteigen der räumlichen Unordnung von der beckenweiten Ablagerung zur Ablagerung einzelner Schichten resultiert aus dem Einfluss autozyklischer Faktoren bei der Ablagerung von Karbonaten. Die Skalenabhängigkeit von Karbonat-Heterogenität ist mit der Auswertung der Algorithmen verknüpft um eine Modellierungsstrategie zu etablieren, welche sowohl die sedimentären Charakteristiken des Aufschlusses als auch die Modellierfähigkeit berücksichtigt. Für die Modellierung der Ablagerungssequenzen wurde ein flächenbasierter Ansatz verwendet. Die Faziesassoziationen wurden durch die Benutzung des TGSim-Algorithmus simuliert, um die regulären Trends zwischen den einzelnen Ablagerungsgebieten zu erhalten. Im Bereich der verschiedenen Lithofazien wurde mit dem SISim-Algorithmus, ein voll stochastischer Ansatz angewendet, um die mosaikartige Verteilung der Lithofazies-Typen zu simulieren. Dieser neue Arbeitsablauf wurde konzipiert, um die Simulierung von Karbonaten auf Basis der einzelnen Heterogenitäten in verschiedenen Größenordnungen zu verbessern. Im Gegensatz zu den in der Literatur angewendeten Simulationsmethoden berücksichtigt diese Studie, dass eine einzelne Modellierungstechnik die natürlichen Ablagerungsmuster und Variabilität von Karbonaten wahrscheinlich nicht korrekt abbildet. Die Einführung verschiedener Techniken, angepasst auf die verschiedenen Ebenen der stratigrafischen Hierarchie, liefert die notwendige Flexibilität um Karbonatsysteme korrekt zu modellieren. Eine enge Verknüpfung zwischen den Fortschritten auf dem Gebieten der Sedimentologie und dem Gebiet der modellierenden Geowissenschaften sollte weiterhin bestehen, um auch zukünftig bei der Simulation von geologischen Gelände-Aufschlüssen eine Verbesserung der 3-D-Modellierung zu erreichen.
Pearson, Richard Vincent. "Simulation of shallow water hydrodynamics and species transport using elliptically generated non-orthogonal boundary-fitted coordinate systems". Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308220.
Texto completo da fonteKarabulut, Dogan Ozge. "Monitoring Of Water Clarity, And Submerged And Emergent Plant Coverages In Shallow Lake Wetlands Using Remote Sensing Techniques". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608235/index.pdf.
Texto completo da fontehowever medium spatial resolution images revealed 8ha of change which was attributed to the presence of mixed pixels due to low resolution. The overall accuracies for submerged plant coverage classification from Quickbird images in Lake Mogan were 83% (2005) and 79% (2006) and for classification of submerged plants species were 72% (2005) and 69% (2006). Moreover, it was found that blue band together with the ratio of red band to blue band, were the best predictors of Secchi disc depth.
Brettle, Matthew John. "Sedimentology and high-resolution sequence stratigraphy of shallow water delta systems in the early Marsdenian (Namurian) Pennine Basin, Northern England". Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367677.
Texto completo da fonteLivros sobre o assunto "Shallow water systems"
Winter, Thomas A. Examination of time-reversal acoustic application to shallow water active sonar systems. Monterey, Calif: Naval Postgraduate School, 2000.
Encontre o texto completo da fonteBuck, John R. Single mode excitation in the shallow water acoustic channel using feedback control. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1996.
Encontre o texto completo da fonteGillett, Blakeney. Microcomputer 3-D finite difference MODFLOW model for shallow layered aquifer systems in the Gulf Shores area of southwest Alabama. Tuscaloosa, Ala. (P.O. Box O, Tuscaloosa, 35486-9780): Geological Survey of Alabama, Hydrogeology Division, 1994.
Encontre o texto completo da fonteL, Wood-Putnam Jody, e Society of Photo-optical Instrumentation Engineers., eds. Information systems for divers and autonomous underwater vehicles operating in very shallow water and surf zone regions II: 27 April 2000, Orlando, USA. Bellingham, Wash., USA: SPIE, 2000.
Encontre o texto completo da fonteL, Wood-Putnam Jody, e Society of Photo-optical Instrumentation Engineers., eds. Information systems for Navy divers and autonomous underwater vehicles operating in very shallow water and surf zone regions: 7-8 April 1999, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1999.
Encontre o texto completo da fonteKammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Encontre o texto completo da fonteKammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Encontre o texto completo da fonteKammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Encontre o texto completo da fonteKammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Encontre o texto completo da fonteRichardson, Donna L. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Richmond, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Shallow water systems"
Toro, Eleuterio F. "First-Order Methods for Systems". In Computational Algorithms for Shallow Water Equations, 189–223. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61395-1_10.
Texto completo da fonteHereman, Willy. "Shallow Water Waves and Solitary Waves". In Encyclopedia of Complexity and Systems Science, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_480-5.
Texto completo da fonteHereman, Willy. "Shallow Water Waves and Solitary Waves". In Mathematics of Complexity and Dynamical Systems, 1520–32. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_96.
Texto completo da fonteHereman, Willy. "Shallow Water Waves and Solitary Waves". In Encyclopedia of Complexity and Systems Science, 8112–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_480.
Texto completo da fonteHereman, Willy. "Shallow Water Waves and Solitary Waves". In Encyclopedia of Complexity and Systems Science Series, 203–20. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2457-9_480.
Texto completo da fonteLannes, David. "Shallow water asymptotics: Systems. Part 1: Derivation". In Mathematical Surveys and Monographs, 121–56. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/188/05.
Texto completo da fonteLannes, David. "Shallow water asymptotics: Systems. Part 2: Justification". In Mathematical Surveys and Monographs, 157–75. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/188/06.
Texto completo da fonteCasasso, Alessandro, e Rajandrea Sethi. "Water-Energy Nexus in Shallow Geothermal Systems". In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, 425–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13068-8_106.
Texto completo da fonteDronkers, J. "Inshore/Offshore Water Exchange in Shallow Coastal Systems". In Coastal-Offshore Ecosystem Interactions, 3–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-52452-3_1.
Texto completo da fonteDronkers, J. "Inshore/offshore water exchange in shallow coastal systems". In Lecture Notes on Coastal and Estuarine Studies, 3–39. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/ln022p0003.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Shallow water systems"
Kochańska, Iwona, Aleksander Schmidt e Jan Schmidt. "Shallow-Water Acoustic Communications in Strong Multipath Propagation Conditions". In 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 99–103. IEEE, 2024. http://dx.doi.org/10.1109/csndsp60683.2024.10636410.
Texto completo da fonteYarina, Marina, Boris Katsnelson e Oleg A. Godin. "Waveguide Mode Selection from Broadband Signal Using Two Vertical Line Arrays in Shallow Water". In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666241.
Texto completo da fonteKUPERMAN, WA, e F. INGENITO. "SURFACE-GENERATED NOISE IN SHALLOW WATER". In Sound Propagation and Underwater Systems 1978. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/23601.
Texto completo da fonteCoffey, W. M., e R. Egito Coelho. "Standard Shallow Water Completion Systems in Brazil". In Offshore Technology Conference. Offshore Technology Conference, 1987. http://dx.doi.org/10.4043/5573-ms.
Texto completo da fontePoor, Cara J., e Daniel M. Wagner. "Evaluation of Soil Mixes in Shallow Bioretention Systems". In World Environmental and Water Resources Congress 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480618.021.
Texto completo da fonteBen-Artzi, Matania, Theodore E. Simos, George Psihoyios, Ch Tsitouras e Zacharias Anastassi. "Conservation Laws on Surfaces: Meteorological Systems—Shallow-Water". In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636668.
Texto completo da fonteGary R. Sands, Inhong Song, Lowell M. Busman e Bradley Hansen. "Water Quality Benefits of "Shallow" Subsurface Drainage Systems". In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.20794.
Texto completo da fonteDOBBINS, PF, e AD GOODSON. "SHALLOW WATER, VERY SHORT RANGE BIOMIMETIC SONAR CONCEPTS". In BIO SONAR SYSTEMS AND BIO ACOUSTICS 2004. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/18026.
Texto completo da fonteFauziya, Farheen, Brejesh Lall, Monika Agrawal, Ayushi Garg e Krutika Jaiswal. "Path Gain Characterization of Shallow Water Acoustic Channel". In WUWNET'17: International Conference on Underwater Networks & Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3148675.3148726.
Texto completo da fonteAziz Amoozegar, David L Lindbo e Christopher P Niewoehner. "Ground Water Mounding Under Large Systems in Areas with Shallow Water Table". In Eleventh Individual and Small Community Sewage Systems Conference Proceedings, 20-24 October 2007, Warwick, Rhode Island. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.24027.
Texto completo da fonteRelatórios de organizações sobre o assunto "Shallow water systems"
Dahl, Peter H. Influence of Bubbles on Naval Systems Operating in Shallow Water: The Scripps Pier Experiment. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1997. http://dx.doi.org/10.21236/ada627579.
Texto completo da fonteWadman, Heidi M., John B. Gaskin e Anthony R. Jackson. Performance of High-Resolution, Acoustic Mapping Systems in a Fluid-Mud Environment : Testing the Effectiveness and Viability of High-Resolution, Hydrographic Survey Systems in a Fluid-Mud Environment. U.S. Army Engineer Research and Development Center, outubro de 2024. http://dx.doi.org/10.21079/11681/49436.
Texto completo da fonteDurkin, Patrick, A. Bak e Matthew Saenz. Modifications to an amphibious unoccupied ground vehicle for survey operations. Engineer Research and Development Center (U.S.), setembro de 2024. http://dx.doi.org/10.21079/11681/49211.
Texto completo da fonteFlood, Roger D., Charles A. Nittrouer e Larry Mayer. A Shallow-Water Swath Bathymetry System. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2000. http://dx.doi.org/10.21236/ada609745.
Texto completo da fonteDriscoll, Neal W., Wayne D. Spencer e David G. Aubrey. Implementation and Design of a Shallow Water Imaging System. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1997. http://dx.doi.org/10.21236/ada635101.
Texto completo da fonteSlattery, S. R., P. J. Barnett, A. J. M. Pugin, D. R. Sharpe, D. Goodyear, R E Gerber, S. Holysh e S. Davies. Tunnel-channel complexes in the Zephyr area, Ontario: potential high-yield aquifers. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331410.
Texto completo da fontePazol, Brian. Multi-Purpose Acoustic Imaging System for Shallow Water AUV Operations. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2001. http://dx.doi.org/10.21236/ada625175.
Texto completo da fonteChu, Peter C. Shallow Water Analysis and Prediction System for the South China Sea. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1997. http://dx.doi.org/10.21236/ada628991.
Texto completo da fonteNg, L. C., e H. Rosenbaum. Shallow Water Imaging Sonar System for Environmental Surveying Final Report CRADA No. TC-1130-95. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1426107.
Texto completo da fonteAlford, Matthew H. Transition Funding for the Shallow Water Integrated Mapping System SWIMS and Modular Microstructure Profiler MMP. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada599034.
Texto completo da fonte