Artigos de revistas sobre o tema "Severe Actute Respiratory Syndrome (SARS)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Severe Actute Respiratory Syndrome (SARS)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ivanov, Konstantin A., Volker Thiel, Jessika C. Dobbe, Yvonne van der Meer, Eric J. Snijder e John Ziebuhr. "Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase". Journal of Virology 78, n.º 11 (1 de junho de 2004): 5619–32. http://dx.doi.org/10.1128/jvi.78.11.5619-5632.2004.
Texto completo da fonteA El-Masry, Eman. "Immunization against severe acute respiratory syndrome Coronavirus 2: an overview". African Health Sciences 21, n.º 4 (14 de dezembro de 2021): 1574–83. http://dx.doi.org/10.4314/ahs.v21i4.11.
Texto completo da fonteZoghi, Sina, Hossein Jafari Khamirani, Seyed Alireza Dastgheib, Mehdi Dianatpour e Alireza Ghaffarieh. "An analysis of inhibition of the severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase by zinc ion: an in silico approach". Future Virology 16, n.º 5 (maio de 2021): 331–39. http://dx.doi.org/10.2217/fvl-2020-0369.
Texto completo da fonteLamirande, Elaine W., Marta L. DeDiego, Anjeanette Roberts, Jadon P. Jackson, Enrique Alvarez, Tim Sheahan, Wun-Ju Shieh et al. "A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters". Journal of Virology 82, n.º 15 (7 de maio de 2008): 7721–24. http://dx.doi.org/10.1128/jvi.00304-08.
Texto completo da fontePoutanen, Susan M., Mary Vearncombe, Allison J. McGeer, Michael Gardam, Grant Large e Andrew E. Simor. "Nosocomial Acquisition of Methicillin-ResistantStaphylococcus aureusDuring an Outbreak of Severe Acute Respiratory Syndrome". Infection Control & Hospital Epidemiology 26, n.º 2 (fevereiro de 2005): 134–37. http://dx.doi.org/10.1086/502516.
Texto completo da fonteMostafa, Ahmed, Ahmed Kandeil, Yaseen A. M. M. Elshaier, Omnia Kutkat, Yassmin Moatasim, Adel A. Rashad, Mahmoud Shehata et al. "FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2". Pharmaceuticals 13, n.º 12 (4 de dezembro de 2020): 443. http://dx.doi.org/10.3390/ph13120443.
Texto completo da fonteFylenko, B. M., V. I. Babenko, N. V. Royko, I. I. Starchenko, S. A. Proskurnya e A. O. Byelyayeva. "Morphological Manifestations of COVID-19-Associated Pneumonia". Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 7, n.º 2 (6 de maio de 2022): 82–87. http://dx.doi.org/10.26693/jmbs07.02.082.
Texto completo da fonteIsnaini, Nadia, Khairan Khairan, Meutia Faradhilla, Elly Sufriadi, Vicky Prajaputra, Binawati Ginting, Syaifullah Muhammad e Raihan Dara Lufika. "A Study of Essential Oils from Patchouli (Pogostemon cablin Benth.) and Its Potential as an Antivirus Agent to Relieve Symptoms of COVID-19". Journal of Patchouli and Essential Oil Products 1, n.º 2 (23 de dezembro de 2022): 27–35. http://dx.doi.org/10.24815/jpeop.v1i2.23763.
Texto completo da fonteRha, Brian, Joana Y. Lively, Janet A. Englund, Mary A. Staat, Geoffrey A. Weinberg, Rangaraj Selvarangan, Natasha B. Halasa et al. "Severe Acute Respiratory Syndrome Coronavirus 2 Infections in Children: Multicenter Surveillance, United States, January–March 2020". Journal of the Pediatric Infectious Diseases Society 9, n.º 5 (18 de junho de 2020): 609–12. http://dx.doi.org/10.1093/jpids/piaa075.
Texto completo da fonteHashimi, Marziah, Thomas Sebrell, Jodi Hedges, Deann Teresa Snyder, Katrina Lyon, Michelle D. Cherne, Amanda Robison et al. "Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in a Bat Gastrointestinal Organoid Model". Journal of Immunology 208, n.º 1_Supplement (1 de maio de 2022): 125.34. http://dx.doi.org/10.4049/jimmunol.208.supp.125.34.
Texto completo da fonteBorbone, Nicola, Gennaro Piccialli, Giovanni Nicola Roviello e Giorgia Oliviero. "Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses". Molecules 26, n.º 4 (13 de fevereiro de 2021): 986. http://dx.doi.org/10.3390/molecules26040986.
Texto completo da fonteMcGill, Andrew R., Roukiah Kahlil, Rinku Dutta, Ryan Green, Mark Howell, Subhra Mohapatra e Shyam S. Mohapatra. "SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges". Infectious Disease Reports 13, n.º 1 (4 de fevereiro de 2021): 102–25. http://dx.doi.org/10.3390/idr13010013.
Texto completo da fonteYao, Lin, Peijun Tang, Hui Jiang, Binbin Gu, Ping Xu, Xiafang Wang, Xin Yu, Jianping Zhang, Yu Pang e Meiying Wu. "Household Clusters of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Suzhou, China". BioMed Research International 2021 (16 de outubro de 2021): 1–7. http://dx.doi.org/10.1155/2021/5565549.
Texto completo da fonteKwaan, Hau C., e Paul F. Lindholm. "The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective". International Journal of Molecular Sciences 22, n.º 3 (28 de janeiro de 2021): 1283. http://dx.doi.org/10.3390/ijms22031283.
Texto completo da fonteParihar, Arpana, Tabassum Zafar, Rekha Khandia, Dipesh Singh Parihar, Rupali Dhote, Yogesh Mishra e Raju Khan. "In silico Analysis for the Repurposing of Broad-spectrum Antiviral Drugs against Multiple Targets from SARS-CoV-2: A Molecular Docking and ADMET Approach". Archives of Proteomics and Bioinformatics 3, n.º 1 (11 de maio de 2023): 3–14. http://dx.doi.org/10.33696/proteomics.3.012.
Texto completo da fonteChoy, Wai-Yan, Shu-Guang Lin, Paul Kay-Sheung Chan, John Siu-Lun Tam, Y. M. Dennis Lo, Ida Miu-Ting Chu, Sau-Na Tsai et al. "Synthetic Peptide Studies on the Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Glycoprotein: Perspective for SARS Vaccine Development". Clinical Chemistry 50, n.º 6 (1 de junho de 2004): 1036–42. http://dx.doi.org/10.1373/clinchem.2003.029801.
Texto completo da fonteIngallinella, P., E. Bianchi, M. Finotto, G. Cantoni, D. M. Eckert, V. M. Supekar, C. Bruckmann, A. Carfi e A. Pessi. "Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus". Proceedings of the National Academy of Sciences 101, n.º 23 (25 de maio de 2004): 8709–14. http://dx.doi.org/10.1073/pnas.0402753101.
Texto completo da fonteNeuman, Benjamin W., David A. Stein, Andrew D. Kroeker, Michael J. Churchill, Alice M. Kim, Peter Kuhn, Philip Dawson et al. "Inhibition, Escape, and Attenuated Growth of Severe Acute Respiratory Syndrome Coronavirus Treated with Antisense Morpholino Oligomers". Journal of Virology 79, n.º 15 (1 de agosto de 2005): 9665–76. http://dx.doi.org/10.1128/jvi.79.15.9665-9676.2005.
Texto completo da fonteSchulze, Jessica, Christin Mache, Anita Balázs, Doris Frey, Daniela Niemeyer, Heidi Olze, Steffen Dommerich et al. "Analysis of Severe Acute Respiratory Syndrome 2 Replication in Explant Cultures of the Human Upper Respiratory Tract Reveals Broad Tissue Tropism of Wild-Type and B.1.1.7 Variant Viruses". Journal of Infectious Diseases 224, n.º 12 (15 de outubro de 2021): 2020–24. http://dx.doi.org/10.1093/infdis/jiab523.
Texto completo da fonteLungu, Claudiu N., Melinda E. Füstös, Ireneusz P. Grudziński, Gabriel Olteanu e Mihai V. Putz. "Protein Interaction with Dendrimer Monolayers: Energy and Surface Topology". Symmetry 12, n.º 4 (17 de abril de 2020): 641. http://dx.doi.org/10.3390/sym12040641.
Texto completo da fonteRajasekharan, Sreejith, Rafaela Milan Bonotto, Lais Nascimento Alves, Yvette Kazungu, Monica Poggianella, Pamela Martinez-Orellana, Natasa Skoko, Sulena Polez e Alessandro Marcello. "Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2". Viruses 13, n.º 5 (30 de abril de 2021): 808. http://dx.doi.org/10.3390/v13050808.
Texto completo da fontePriyandoko, Didik, Wahyu Widowati, Mawar Subangkit, Diana Jasaputra, Teresa Wargasetia, Ika Sholihah e Jenifer Aviani. "Molecular Docking Study of the Potential Relevance of the Natural Compounds Isoflavone and Myricetin to COVID-19". International Journal Bioautomation 25, n.º 3 (setembro de 2021): 271–82. http://dx.doi.org/10.7546/ijba.2021.25.3.000796.
Texto completo da fonteNakayoshi, Tomoki, Koichi Kato, Eiji Kurimoto e Akifumi Oda. "Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2". International Journal of Molecular Sciences 22, n.º 18 (11 de setembro de 2021): 9837. http://dx.doi.org/10.3390/ijms22189837.
Texto completo da fonteDonadel, Marcelo Menegotto, Lucas Montiel Petry, Carolina Boeira Soares, Laura de Castro e. Garcia, Luana Braga Bittencourt e Luiz Carlos Bodanese. "Analysis of the impact of pronation maneuver in patients on mechanical ventilation with diagnosis of pneumonia by Covid-19 and acute respiratory distress syndrome". Brazilian Journal of Health Review 5, n.º 6 (9 de dezembro de 2022): 24053–64. http://dx.doi.org/10.34119/bjhrv5n6-175.
Texto completo da fonteDenisov, M. S., e Ya A. Beloglazova. "Anticoronaviral activity of triterpenoids". Biomedical Chemistry: Research and Methods 3, n.º 2 (2020): e00127. http://dx.doi.org/10.18097/bmcrm00127.
Texto completo da fonteSnow-Smith, Maryonne, Paul J. Baker, Andrea C. Bohrer, Ehydel Castro, Flor Torres-Juarez, Charles F. Anderson, Michelle M. Makiya, Irini Sereti, Amy D. Klion e Katrin D. Mayer-Barber. "Investigating a Role for Eosinophils in the Immune Response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Journal of Immunology 210, n.º 1_Supplement (1 de maio de 2023): 73.10. http://dx.doi.org/10.4049/jimmunol.210.supp.73.10.
Texto completo da fonteShobiroh Nuur'Alimah, Agnia Nurul Jannati, Laksmi Ambarsari e Syamsul Falah. "In silico study: molecular docking of SARS-Cov-2 endoribonuclease on active compounds of Gmelina arborea Roxb. bark". E-Journal Menara Perkebunan 92, n.º 1 (30 de abril de 2024): 70–81. http://dx.doi.org/10.22302/iribb.jur.mp.v92i1.561.
Texto completo da fonteSada, Mitsuru, Takeshi Saraya, Haruyuki Ishii, Kaori Okayama, Yuriko Hayashi, Takeshi Tsugawa, Atsuyoshi Nishina et al. "Detailed Molecular Interactions of Favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza Virus Polymerases In Silico". Microorganisms 8, n.º 10 (20 de outubro de 2020): 1610. http://dx.doi.org/10.3390/microorganisms8101610.
Texto completo da fonteCitarella, Andrea, Alessandro Dimasi, Davide Moi, Daniele Passarella, Angela Scala, Anna Piperno e Nicola Micale. "Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives". Biomolecules 13, n.º 9 (2 de setembro de 2023): 1339. http://dx.doi.org/10.3390/biom13091339.
Texto completo da fonteBedford, Trevor, Alexander L. Greninger, Pavitra Roychoudhury, Lea M. Starita, Michael Famulare, Meei-Li Huang, Arun Nalla et al. "Cryptic transmission of SARS-CoV-2 in Washington state". Science 370, n.º 6516 (10 de setembro de 2020): 571–75. http://dx.doi.org/10.1126/science.abc0523.
Texto completo da fonteShigeta, Shiro, e Toshihiro Yamase. "Current Status of Anti-SARS Agents". Antiviral Chemistry and Chemotherapy 16, n.º 1 (fevereiro de 2005): 23–31. http://dx.doi.org/10.1177/095632020501600103.
Texto completo da fonteKullappan, Malathi, Jenifer M Ambrose e Surapaneni Krishna Mohan. "Lead Identification for Severe Acute Respiratory Syndrome Coronavirus-2 Spike D614G Variant of COVID-19: A virtual Screening Process". Biomedical and Pharmacology Journal 14, n.º 4 (30 de dezembro de 2021): 1929–39. http://dx.doi.org/10.13005/bpj/2291.
Texto completo da fonteOżarowski, Marcin, e Tomasz M. Karpiński. "The Effects of Propolis on Viral Respiratory Diseases". Molecules 28, n.º 1 (1 de janeiro de 2023): 359. http://dx.doi.org/10.3390/molecules28010359.
Texto completo da fonteJugler, Collin, Haiyan Sun e Qiang Chen. "SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody". Vaccines 9, n.º 11 (20 de novembro de 2021): 1365. http://dx.doi.org/10.3390/vaccines9111365.
Texto completo da fonteSalman, Saad, Fahad Hassan Shah, Maham Chaudhry, Muniba Tariq, Muhammad Yasir Akbar e Muhammad Adnan. "In silico analysis of protein/peptide-based inhalers against SARS-CoV-2". Future Virology 15, n.º 9 (setembro de 2020): 557–64. http://dx.doi.org/10.2217/fvl-2020-0119.
Texto completo da fonteZhong, Nan, Shengnan Zhang, Peng Zou, Jiaxuan Chen, Xue Kang, Zhe Li, Chao Liang, Changwen Jin e Bin Xia. "Without Its N-Finger, the Main Protease of Severe Acute Respiratory Syndrome Coronavirus Can Form a Novel Dimer through Its C-Terminal Domain". Journal of Virology 82, n.º 9 (27 de fevereiro de 2008): 4227–34. http://dx.doi.org/10.1128/jvi.02612-07.
Texto completo da fonteDhakad, Prashant Kumar, Raghav Mishra e Isha Mishra. "A Concise Review: Nutritional Interventions for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Natural Resources for Human Health 3, n.º 4 (18 de novembro de 2023): 403–25. http://dx.doi.org/10.53365/nrfhh/175070.
Texto completo da fonteSalman, Saad, Fahad H. Shah, Jawaria Idrees, Fariha Idrees, Shreya Velagala, Johar Ali e Abid A. Khan. "Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors". Future Virology 15, n.º 5 (maio de 2020): 267–75. http://dx.doi.org/10.2217/fvl-2020-0079.
Texto completo da fontePignolo, Antonia, Maria Aprile, Cesare Gagliardo, Giovanni Maurizio Giammanco, Marco D’Amelio, Paolo Aridon, Giuseppe La Tona, Giuseppe Salemi e Paolo Ragonese. "Clinical Onset and Multiple Sclerosis Relapse after SARS-CoV-2 Infection". Neurology International 13, n.º 4 (6 de dezembro de 2021): 695–700. http://dx.doi.org/10.3390/neurolint13040066.
Texto completo da fonteGordon, Calvin J., Egor P. Tchesnokov, Emma Woolner, Jason K. Perry, Joy Y. Feng, Danielle P. Porter e Matthias Götte. "Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency". Journal of Biological Chemistry 295, n.º 20 (13 de abril de 2020): 6785–97. http://dx.doi.org/10.1074/jbc.ra120.013679.
Texto completo da fontePratapa, Sree Karthik, Sourya Acharya, Sai Spoorthy Mamidipalli e Amol Andhale. "Caring for Cancer Patients during Corona Pandemic—(COVID-19)—A Narrative Review". South Asian Journal of Cancer 10, n.º 01 (janeiro de 2021): 19–22. http://dx.doi.org/10.1055/s-0040-1721292.
Texto completo da fonteWang, Wenxiang, Ce Yang, Jing Xia, Ning Li e Wei Xiong. "Luteolin is a potential inhibitor of COVID-19: An in silico analysis". Medicine 102, n.º 38 (22 de setembro de 2023): e35029. http://dx.doi.org/10.1097/md.0000000000035029.
Texto completo da fonteElaiw, Ahmed, Abdualla Alsaedi, Aatef Hobiny e Shaban Aly. "Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses". Mathematics 11, n.º 1 (29 de dezembro de 2022): 190. http://dx.doi.org/10.3390/math11010190.
Texto completo da fonteSaad-Roy, Chadi M., Caroline E. Wagner, Rachel E. Baker, Sinead E. Morris, Jeremy Farrar, Andrea L. Graham, Simon A. Levin, Michael J. Mina, C. Jessica E. Metcalf e Bryan T. Grenfell. "Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years". Science 370, n.º 6518 (21 de setembro de 2020): 811–18. http://dx.doi.org/10.1126/science.abd7343.
Texto completo da fonteGorbunov, A. A., L. E. Sorokina, D. V. Chegodar, A. V. Kubyshkin e I. I. Fomochkina. "COVID-19 DIAGNOSTICS: CURRENT STATE OF THE PROBLEM AND PROSPECTS IN THE BRANCH". Crimea Journal of Experimental and Clinical Medicine 10, n.º 2 (2020): 69–77. http://dx.doi.org/10.37279/2224-6444-2020-10-2-69-77.
Texto completo da fonteSingh, Akhilesh Vikram. "Potential of amentoflavone with antiviral properties in COVID-19 treatment". Asian Biomedicine 15, n.º 4 (1 de agosto de 2021): 153–59. http://dx.doi.org/10.2478/abm-2021-0020.
Texto completo da fonteRoy, Santanu, Prakash Chandra Ghosh, Mitali Bera e Sananda Majumder. "Pulmonary involvement in multisystem inflammatory syndrome in children, a diagnostic conundrum: case series from a tertiary care hospital in eastern India". International Journal of Contemporary Pediatrics 9, n.º 8 (25 de julho de 2022): 762. http://dx.doi.org/10.18203/2349-3291.ijcp20221861.
Texto completo da fonteColarossi, Bianca. "How Our Healthcare System Failed During the SARS Outbreak". Sciential - McMaster Undergraduate Science Journal, n.º 1 (25 de novembro de 2018): 23–24. http://dx.doi.org/10.15173/sciential.v1i1.1921.
Texto completo da fonteSasisekharan, Varun, Niharika Pentakota, Akila Jayaraman, Kannan Tharakaraman, Gerald N. Wogan e Uma Narayanasami. "Orthogonal immunoassays for IgG antibodies to SARS-CoV-2 antigens reveal that immune response lasts beyond 4 mo post illness onset". Proceedings of the National Academy of Sciences 118, n.º 5 (14 de janeiro de 2021): e2021615118. http://dx.doi.org/10.1073/pnas.2021615118.
Texto completo da fonteDawood, A. A. "Identification of Cytotoxic T-Cell and B-Cell Epitopes in the Nucleocapsid Phosphoprotein of SARS-COV-2 Using Immunoinformatics". Mikrobiolohichnyi Zhurnal 83, n.º 1 (17 de fevereiro de 2021): 78–86. http://dx.doi.org/10.15407/microbiolj83.01.078.
Texto completo da fonte