Siga este link para ver outros tipos de publicações sobre o tema: Semisimple algebraic groups.

Livros sobre o tema "Semisimple algebraic groups"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 21 melhores livros para estudos sobre o assunto "Semisimple algebraic groups".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.

1

Humphreys, James E. Conjugacy classes in semisimple algebraic groups. Providence, R.I: American Mathematical Society, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hiss, G. Imprimitive irreducible modules for finite quasisimple groups. Providence, Rhode Island: American Mathematical Society, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kapovich, Michael. The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. Providence, R.I: American Mathematical Society, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

1959-, McGovern William M., ed. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Doran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation e Nollet, Scott, 1962- editor of compilation, eds. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

1938-, Griffiths Phillip, e Kerr Matthew D. 1975-, eds. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Benkart, Georgia. Stability in modules for classical lie algebras: A constructive approach. Providence, R.I., USA: American Mathematical Society, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Strade, Helmut, Thomas Weigel, Marina Avitabile e Jörg Feldvoss. Lie algebras and related topics: Workshop in honor of Helmut Strade's 70th birthday : lie algebras, May 22-24, 2013, Università degli studi di Milano-Bicocca, Milano, Italy. Providence, Rhode Island: American Mathematical Society, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Humphreys, James E. Conjugacy Classes in Semisimple Algebraic Groups. American Mathematical Society, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gille, Philippe. Groupes algébriques semi-simples en dimension cohomologique ≤2: Semisimple algebraic groups in cohomological dimension ≤2. Springer, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Brauer groups, Tamagawa measures, and rational points on algebraic varieties. Providence, Rhode Island: American Mathematical Society, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Collingwood, David H., e William M. McGovern. Nilpotent Orbits In Semisimple Lie Algebra: An Introduction. Chapman & Hall/CRC, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Unramified Brauer Group and Its Applications. American Mathematical Society, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Dobrev, Vladimir K. Noncompact Semisimple Lie Algebras and Groups. de Gruyter GmbH, Walter, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Dobrev, Vladimir K. Noncompact Semisimple Lie Algebras and Groups. de Gruyter GmbH, Walter, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Dobrev, Vladimir K. Noncompact Semisimple Lie Algebras and Groups. de Gruyter GmbH, Walter, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Donkin, S. Representations of the Hyperalgebra of a Semisimple Group. Cambridge University Press, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Semisolvability of Semisimple Hopf Algebras of Low Dimension (Memoirs of the American Mathematical Society). American Mathematical Society, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Onishchik, Arkady L. Lectures on Real Semisimple Lie Algebras and Their Representations (ESI Lectures in Mathematics & Physics). Amer Mathematical Society, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Gaitsgory, Dennis, e Jacob Lurie. Weil's Conjecture for Function Fields. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691182148.001.0001.

Texto completo da fonte
Resumo:
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ℓ-adic sheaves. Using this theory, the authors articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck–Lefschetz trace formula, the book shows that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Noncommutative geometry and global analysis: Conference in honor of Henri Moscovici, June 29-July 4, 2009, Bonn, Germany. Providence, R.I: American Mathematical Society, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia