Literatura científica selecionada sobre o tema "Semisimple algebraic groups"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Semisimple algebraic groups".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Semisimple algebraic groups"
Nahlus, Nazih. "Homomorphisms of Lie Algebras of Algebraic Groups and Analytic Groups". Canadian Mathematical Bulletin 38, n.º 3 (1 de setembro de 1995): 352–59. http://dx.doi.org/10.4153/cmb-1995-051-7.
Texto completo da fonteDe Clercq, Charles. "Équivalence motivique des groupes algébriques semisimples". Compositio Mathematica 153, n.º 10 (27 de julho de 2017): 2195–213. http://dx.doi.org/10.1112/s0010437x17007369.
Texto completo da fonteDe Clercq, Charles, e Skip Garibaldi. "Tits p-indexes of semisimple algebraic groups". Journal of the London Mathematical Society 95, n.º 2 (16 de janeiro de 2017): 567–85. http://dx.doi.org/10.1112/jlms.12025.
Texto completo da fonteGordeev, Nikolai, Boris Kunyavskiĭ e Eugene Plotkin. "Word maps on perfect algebraic groups". International Journal of Algebra and Computation 28, n.º 08 (dezembro de 2018): 1487–515. http://dx.doi.org/10.1142/s0218196718400052.
Texto completo da fonteCassidy, Phyllis Joan. "The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras". Journal of Algebra 121, n.º 1 (fevereiro de 1989): 169–238. http://dx.doi.org/10.1016/0021-8693(89)90092-6.
Texto completo da fonteAvdeev, R. S. "On solvable spherical subgroups of semisimple algebraic groups". Transactions of the Moscow Mathematical Society 72 (2011): 1–44. http://dx.doi.org/10.1090/s0077-1554-2012-00192-7.
Texto completo da fonteProcesi, Claudio. "Book Review: Conjugacy classes in semisimple algebraic groups". Bulletin of the American Mathematical Society 34, n.º 01 (1 de janeiro de 1997): 55–57. http://dx.doi.org/10.1090/s0273-0979-97-00689-7.
Texto completo da fonteVoskresenskii, V. E. "Maximal tori without effect in semisimple algebraic groups". Mathematical Notes of the Academy of Sciences of the USSR 44, n.º 3 (setembro de 1988): 651–55. http://dx.doi.org/10.1007/bf01159125.
Texto completo da fonteMohrdieck, S. "Conjugacy classes of non-connected semisimple algebraic groups". Transformation Groups 8, n.º 4 (dezembro de 2003): 377–95. http://dx.doi.org/10.1007/s00031-003-0429-3.
Texto completo da fonteBreuillard, Emmanuel, Ben Green, Robert Guralnick e Terence Tao. "Strongly dense free subgroups of semisimple algebraic groups". Israel Journal of Mathematics 192, n.º 1 (15 de março de 2012): 347–79. http://dx.doi.org/10.1007/s11856-012-0030-3.
Texto completo da fonteTeses / dissertações sobre o assunto "Semisimple algebraic groups"
Mohrdieck, Stephan. "Conjugacy classes of non-connected semisimple algebraic groups". [S.l. : s.n.], 2000. http://www.sub.uni-hamburg.de/disse/172/diss.pdf.
Texto completo da fonteHazi, Amit. "Semisimple filtrations of tilting modules for algebraic groups". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271774.
Texto completo da fonteKenneally, Darren John. "On eigenvectors for semisimple elements in actions of algebraic groups". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/224782.
Texto completo da fonteGandhi, Raj. "Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Texto completo da fonteMaccan, Matilde. "Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéristiques". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/2e27fe72-c9e0-4d56-8e49-14fc84686d6c.
Texto completo da fonteThis thesis brings to an end the classification of parabolic subgroup schemes of semisimple groups over an algebraically closed field, focusing on characteristic two and three. First, we present the classification under the assumption that the reduced part of these subgroups is maximal; then we proceed to the general case. We arrive at an almost uniform description: with the exception of a group of type G₂ in characteristic two, any parabolic subgroup scheme is obtained by multiplying reduced parabolic subgroups by kernels of purely inseparable isogenies, then taking the intersection. In conclusion, we discuss some geometric implications of this classification
Oriente, Francesco. "Classifying semisimple orbits of theta-groups". Doctoral thesis, Università degli studi di Trento, 2012. https://hdl.handle.net/11572/368303.
Texto completo da fonteOriente, Francesco. "Classifying semisimple orbits of theta-groups". Doctoral thesis, University of Trento, 2012. http://eprints-phd.biblio.unitn.it/731/1/tesi.pdf.
Texto completo da fonteLampetti, Enrico. "Nilpotent orbits in semisimple Lie algebras". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23595/.
Texto completo da fonteNishiyama, Kyo. "Representations of Weyl groups and their Hecke algebras on virtual character modules of a semisimple Lie group". 京都大学 (Kyoto University), 1986. http://hdl.handle.net/2433/86366.
Texto completo da fonteAthapattu, Mudiyanselage Chathurika Umayangani Manike Athapattu. "Chevalley Groups". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1986.
Texto completo da fonteLivros sobre o assunto "Semisimple algebraic groups"
Humphreys, James E. Conjugacy classes in semisimple algebraic groups. Providence, R.I: American Mathematical Society, 1995.
Encontre o texto completo da fonteHiss, G. Imprimitive irreducible modules for finite quasisimple groups. Providence, Rhode Island: American Mathematical Society, 2015.
Encontre o texto completo da fonteKapovich, Michael. The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. Providence, R.I: American Mathematical Society, 2008.
Encontre o texto completo da fonte1959-, McGovern William M., ed. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.
Encontre o texto completo da fonteDoran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation e Nollet, Scott, 1962- editor of compilation, eds. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.
Encontre o texto completo da fonte1938-, Griffiths Phillip, e Kerr Matthew D. 1975-, eds. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Encontre o texto completo da fonteBenkart, Georgia. Stability in modules for classical lie algebras: A constructive approach. Providence, R.I., USA: American Mathematical Society, 1990.
Encontre o texto completo da fonteStrade, Helmut, Thomas Weigel, Marina Avitabile e Jörg Feldvoss. Lie algebras and related topics: Workshop in honor of Helmut Strade's 70th birthday : lie algebras, May 22-24, 2013, Università degli studi di Milano-Bicocca, Milano, Italy. Providence, Rhode Island: American Mathematical Society, 2015.
Encontre o texto completo da fonteHumphreys, James E. Conjugacy Classes in Semisimple Algebraic Groups. American Mathematical Society, 1995.
Encontre o texto completo da fonteGille, Philippe. Groupes algébriques semi-simples en dimension cohomologique ≤2: Semisimple algebraic groups in cohomological dimension ≤2. Springer, 2019.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Semisimple algebraic groups"
Onishchik, Arkadij L., e Ernest B. Vinberg. "Complex Semisimple Lie Groups". In Lie Groups and Algebraic Groups, 136–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_4.
Texto completo da fonteOnishchik, Arkadij L., e Ernest B. Vinberg. "Real Semisimple Lie Groups". In Lie Groups and Algebraic Groups, 221–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_5.
Texto completo da fonteBrown, Ken A., e Ken R. Goodearl. "Primer on Semisimple Lie Algebras". In Lectures on Algebraic Quantum Groups, 39–44. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_5.
Texto completo da fonteLakshmibai, V., e Justin Brown. "Representation Theory of Semisimple Algebraic Groups". In Texts and Readings in Mathematics, 153–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1393-6_11.
Texto completo da fonteLakshmibai, V., e Justin Brown. "Representation Theory of Semisimple Algebraic Groups". In Texts and Readings in Mathematics, 183–96. Gurgaon: Hindustan Book Agency, 2009. http://dx.doi.org/10.1007/978-93-86279-41-5_11.
Texto completo da fonteBrown, Ken A., e Ken R. Goodearl. "Generic Quantized Coordinate Rings of Semisimple Groups". In Lectures on Algebraic Quantum Groups, 59–67. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_7.
Texto completo da fonteMargulis, Gregori Aleksandrovitch. "Normal Subgroups and “Abstract” Homomorphisms of Semisimple Algebraic Groups Over Global Fields". In Discrete Subgroups of Semisimple Lie Groups, 258–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-51445-6_9.
Texto completo da fonteLanglands, R. "On the classification of irreducible representations of real algebraic groups". In Representation Theory and Harmonic Analysis on Semisimple Lie Groups, 101–70. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/surv/031/03.
Texto completo da fonteGuivarc’h, Yves, Lizhen Ji e J. C. Taylor. "Extension to Semisimple Algebraic Groups Defined Over a Local Field". In Compactification of Symmetric Spaces, 231–36. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2452-5_15.
Texto completo da fonteAlperin, J. L., e Rowen B. Bell. "Semisimple Algebras". In Groups and Representations, 107–36. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0799-3_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Semisimple algebraic groups"
Gupta, Shalini, e Jasbir Kaur. "Structure of some finite semisimple group algebras". In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080606.
Texto completo da fonte