Literatura científica selecionada sobre o tema "Semiconducting polymer blends"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Semiconducting polymer blends".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Semiconducting polymer blends"
Kulatunga, Piumi, Nastaran Yousefi e Simon Rondeau-Gagné. "Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability". Chemosensors 10, n.º 6 (24 de maio de 2022): 201. http://dx.doi.org/10.3390/chemosensors10060201.
Texto completo da fonteMcNutt, William W., Aristide Gumyusenge, Luke A. Galuska, Zhiyuan Qian, Jiazhi He, Xiaodan Gu e Jianguo Mei. "N-Type Complementary Semiconducting Polymer Blends". ACS Applied Polymer Materials 2, n.º 7 (10 de junho de 2020): 2644–50. http://dx.doi.org/10.1021/acsapm.0c00261.
Texto completo da fonteYu, G., H. Nishino, A. J. Heeger, T. A. Chen e R. D. Rieke. "Enhanced electroluminescence from semiconducting polymer blends". Synthetic Metals 72, n.º 3 (junho de 1995): 249–52. http://dx.doi.org/10.1016/0379-6779(95)03282-7.
Texto completo da fonteGong, X., W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses e A. J. Heeger. "White Electrophosphorescence from Semiconducting Polymer Blends". Advanced Materials 16, n.º 7 (5 de abril de 2004): 615–19. http://dx.doi.org/10.1002/adma.200306230.
Texto completo da fonteGumyusenge, Aristide, Dung T. Tran, Xuyi Luo, Gregory M. Pitch, Yan Zhao, Kaelon A. Jenkins, Tim J. Dunn, Alexander L. Ayzner, Brett M. Savoie e Jianguo Mei. "Semiconducting polymer blends that exhibit stable charge transport at high temperatures". Science 362, n.º 6419 (6 de dezembro de 2018): 1131–34. http://dx.doi.org/10.1126/science.aau0759.
Texto completo da fonteStingelin, Natalie. "(Invited) Manipulating Photoexcitations of Flexible-Chain Polymer Semiconductors Via the Local Environment". ECS Meeting Abstracts MA2023-01, n.º 14 (28 de agosto de 2023): 1347. http://dx.doi.org/10.1149/ma2023-01141347mtgabs.
Texto completo da fonteMulderig, Andrew J., Yan Jin, Fei Yu, Jong Keum, Kunlun Hong, James F. Browning, Gregory Beaucage, Gregory S. Smith e Vikram K. Kuppa. "Determination of active layer morphology in all-polymer photovoltaic cells". Journal of Applied Crystallography 50, n.º 5 (18 de agosto de 2017): 1289–98. http://dx.doi.org/10.1107/s1600576717010457.
Texto completo da fonteCleave, V., G. Yahioglu, P. Le Barny, D. H. Hwang, A. B. Holmes, R. H. Friend e N. Tessler. "Transfer Processes in Semiconducting Polymer-Porphyrin Blends". Advanced Materials 13, n.º 1 (janeiro de 2001): 44–47. http://dx.doi.org/10.1002/1521-4095(200101)13:1<44::aid-adma44>3.0.co;2-#.
Texto completo da fonteAliouat, Mouaad Yassine, Dmitriy Ksenzov, Stephanie Escoubas, Jörg Ackermann, Dominique Thiaudière, Cristian Mocuta, Mohamed Cherif Benoudia, David Duche, Olivier Thomas e Souren Grigorian. "Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching". Materials 13, n.º 14 (10 de julho de 2020): 3092. http://dx.doi.org/10.3390/ma13143092.
Texto completo da fonteJo, Sae Byeok, Wi Hyoung Lee, Longzhen Qiu e Kilwon Cho. "Polymer blends with semiconducting nanowires for organic electronics". Journal of Materials Chemistry 22, n.º 10 (2012): 4244. http://dx.doi.org/10.1039/c2jm16059e.
Texto completo da fonteTeses / dissertações sobre o assunto "Semiconducting polymer blends"
Griffo, Michael S. "Charge dynamics in polymer-nanoparticle blends for nonvolatile memory : Surface enhanced fluorescence of a semiconducting polymer; surface plasmon assisted luminescent solar concentrator waveguides /". Diss., Digital Dissertations Database. Restricted to UC campuses, 2009. http://uclibs.org/PID/11984.
Texto completo da fonteAl, Yaman Yasmina. "Comprendre les mélanges de polymères pour leur utilisation comme conducteurs mixtes d'ions et d'électrons". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0431.
Texto completo da fonteOrganic Electrochemical devices are emerging as vital components in bioelectronics, particularly for applications requiring interfacing with biological systems, such as medical implants and wearable devices. A recurring challenge in the performance of these devices is the inefficient ion transport within the semiconducting polymers used, which limits their overall efficiency. To address this, we initially investigated newly synthesized hydrophilic polymers designed to enhance ion mobility. However, these materials exhibited poor solubility, leading to ineffective device performance. Consequently, we shifted our approach to polymer blending as a more practical solution. By blending the hydrophobic poly(3-hexylthiophene) (P3HT) with hydrophilic polymers such as P3HT-b-PEO or polyethylene oxide (PEO), we enhanced ion mobility while maintaining the necessary electronic properties. These blends demonstrated clear transistor behavior, with P3HT-b-PEO acting as a compatibilizer, significantly improving stability comparedto PEO alone. Blends with higher molecular weight P3HT also exhibited greater stability and faster response times, likely due to increased polymer entanglement. When this blending strategy was applied to the more rigid polymer Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)] (PDPP2T-TT-OD), we observed similar improvements in device performance, although the polymer's rigid backbone limited compatibility. Overall, this research highlights the effectiveness of polymer blending in optimizing ion transport and stability in OECTs, paving the way for more efficient bio-interfacing electronic devices
Chan, Ka Hin. "Charge injection and transport characterization of semiconducting polymers and their bulk heterojunction blends". HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1405.
Texto completo da fonte(8086511), Aristide Gumyusenge. "High Temperature Semiconducting Polymers and Polymer Blends". Thesis, 2019.
Encontre o texto completo da fonteChuang, Ching-Heng, e 莊靖恆. "Morphology and Electronic Properties of Semiconducting Polymer and Branched Polyethylene Blends and the synthesis of Self-Healing and elastic random copolymer". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8wkqrq.
Texto completo da fonteCapítulos de livros sobre o assunto "Semiconducting polymer blends"
McNeill, Christopher R. "Conjugated Polymer Blends: Toward All-Polymer Solar Cells". In Semiconducting Polymer Composites, 399–425. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch14.
Texto completo da fonteLoos, Joachim. "Nanoscale Morphological Characterization for Semiconductive Polymer Blends". In Semiconducting Polymer Composites, 39–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Semiconducting polymer blends"
Gong, Xiong, Daniel Moses e Alan J. Heeger. "White electrophosphorescence from semiconducting polymer blends". In Optical Science and Technology, the SPIE 49th Annual Meeting, editado por Zakya H. Kafafi e Paul A. Lane. SPIE, 2004. http://dx.doi.org/10.1117/12.559072.
Texto completo da fonteMei, Jianguo, e Aristide Gumyusenge. "Semiconducting polymer blends that exhibit stable charge transport at high temperatures (Conference Presentation)". In Physical Chemistry of Semiconductor Materials and Interfaces XVIII, editado por Daniel Congreve, Hugo A. Bronstein, Christian Nielsen e Felix Deschler. SPIE, 2019. http://dx.doi.org/10.1117/12.2529702.
Texto completo da fonteBeek, Waldo J. E., Martijn M. Wienk e René A. J. Janssen. "Hybrid bulk heterojunction solar cells: blends of ZnO semiconducting nanoparticles and conjugated polymers". In Optics & Photonics 2005, editado por Zakya H. Kafafi e Paul A. Lane. SPIE, 2005. http://dx.doi.org/10.1117/12.614911.
Texto completo da fonte