Siga este link para ver outros tipos de publicações sobre o tema: Semi-linear.

Artigos de revistas sobre o tema "Semi-linear"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Semi-linear".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Georgiou, Nicos, Mathew Joseph, Davar Khoshnevisan e Shang-Yuan Shiu. "Semi-discrete semi-linear parabolic SPDEs". Annals of Applied Probability 25, n.º 5 (outubro de 2015): 2959–3006. http://dx.doi.org/10.1214/14-aap1065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

BAME, Valmir, e Lulezim HANELLI. "Numerical Solution for Semi Linear Hyperbolic Differential Equations". International Journal of Innovative Research in Engineering & Management 6, n.º 4 (julho de 2019): 28–32. http://dx.doi.org/10.21276/ijirem.2019.6.4.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Krief, Jerome M. "Semi‐linear mode regression". Econometrics Journal 20, n.º 2 (1 de junho de 2017): 149–67. http://dx.doi.org/10.1111/ectj.12088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Knüppel, Frieder, e Klaus Nielsen. "Covering singular linear semi-groups". Linear Algebra and its Applications 438, n.º 7 (abril de 2013): 3039–53. http://dx.doi.org/10.1016/j.laa.2012.12.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Aneiros-Pérez, Germán, e Philippe Vieu. "Semi-functional partial linear regression". Statistics & Probability Letters 76, n.º 11 (junho de 2006): 1102–10. http://dx.doi.org/10.1016/j.spl.2005.12.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lin, C. J., S. C. Fang e Soon-Yi Wu. "Parametric linear semi-infinite programming". Applied Mathematics Letters 9, n.º 3 (maio de 1996): 89–96. http://dx.doi.org/10.1016/0893-9659(96)00038-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Altman, Eitan. "Semi-linear Stochastic Difference Equations". Discrete Event Dynamic Systems 19, n.º 1 (23 de outubro de 2008): 115–36. http://dx.doi.org/10.1007/s10626-008-0053-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Liu, Chien-Liang, Wen-Hoar Hsaio, Chia-Hoang Lee e Fu-Sheng Gou. "Semi-Supervised Linear Discriminant Clustering". IEEE Transactions on Cybernetics 44, n.º 7 (julho de 2014): 989–1000. http://dx.doi.org/10.1109/tcyb.2013.2278466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Toher, Deirdre, Gerard Downey e Thomas Brendan Murphy. "Semi-supervised linear discriminant analysis". Journal of Chemometrics 25, n.º 12 (10 de novembro de 2011): 621–30. http://dx.doi.org/10.1002/cem.1408.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

D’Alessandro, Flavio, Benedetto Intrigila e Stefano Varricchio. "Quasi-polynomials, linear Diophantine equations and semi-linear sets". Theoretical Computer Science 416 (janeiro de 2012): 1–16. http://dx.doi.org/10.1016/j.tcs.2011.10.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Mabrouk, M., e H. Samadi. "Linear and semi-linear reinforcement problems by thin layers". Zeitschrift f�r Angewandte Mathematik und Physik (ZAMP) 54, n.º 2 (1 de março de 2003): 349–75. http://dx.doi.org/10.1007/s000330300008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Maz'ya, Vladimir, e Valdimir Karlin. "Semi-analytic time-marching algorithms for semi-linear parabolic equations". BIT 34, n.º 1 (março de 1994): 129–47. http://dx.doi.org/10.1007/bf01935022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Dongshuang, Zhang. "Semi-linear Elliptic Equations on Graph". Journal of Partial Differential Equations 30, n.º 3 (junho de 2017): 221–31. http://dx.doi.org/10.4208/jpde.v30.n3.3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Gutlyanski, Vladimir, Olga Nesmelova e Vladimir Ryazanov. "Semi-linear equations and quasiconformal mappings". Complex Variables and Elliptic Equations 65, n.º 5 (15 de outubro de 2019): 823–43. http://dx.doi.org/10.1080/17476933.2019.1631288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Qingguo, Tang. "Estimation for semi-functional linear regression". Statistics 49, n.º 6 (20 de novembro de 2014): 1262–78. http://dx.doi.org/10.1080/02331888.2014.979827.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Knuth, Donald E. "Semi-optimal bases for linear dependencies". Linear and Multilinear Algebra 17, n.º 1 (janeiro de 1985): 1–4. http://dx.doi.org/10.1080/03081088508817636.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Álvarez, Teresa, Sonia Keskes e Maher Mnif. "On essentially semi regular linear relations". Linear Algebra and its Applications 530 (outubro de 2017): 518–40. http://dx.doi.org/10.1016/j.laa.2017.06.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ding, Hui, Zhiping Lu, Jian Zhang e Riquan Zhang. "Semi-functional partial linear quantile regression". Statistics & Probability Letters 142 (novembro de 2018): 92–101. http://dx.doi.org/10.1016/j.spl.2018.07.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Brannigan, M. "Approximation by semi-non-linear functions". Journal of Approximation Theory 48, n.º 2 (outubro de 1986): 189–200. http://dx.doi.org/10.1016/0021-9045(86)90003-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Chan-Wai-Nam, Quentin, Joseph Mikael e Xavier Warin. "Machine Learning for Semi Linear PDEs". Journal of Scientific Computing 79, n.º 3 (12 de fevereiro de 2019): 1667–712. http://dx.doi.org/10.1007/s10915-019-00908-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Dorsey, Jonathan, Tom Gannon, Nathaniel Jacobson, Charles R. Johnson e Morrison Turnansky. "Linear preservers of semi-positive matrices". Linear and Multilinear Algebra 64, n.º 9 (22 de dezembro de 2015): 1853–62. http://dx.doi.org/10.1080/03081087.2015.1122723.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Strauss, H. "Uniqueness in Linear Semi-infinite Optimization". Journal of Approximation Theory 75, n.º 2 (novembro de 1993): 198–213. http://dx.doi.org/10.1006/jath.1993.1099.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Fougères, P., e B. Zegarliński. "Semi-linear problems in infinite dimensions". Journal of Functional Analysis 228, n.º 1 (novembro de 2005): 39–88. http://dx.doi.org/10.1016/j.jfa.2005.06.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Zhang, Qinghong. "Understanding linear semi-infinite programming via linear programming over cones". Optimization 59, n.º 8 (novembro de 2010): 1247–58. http://dx.doi.org/10.1080/02331930903395865.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Nicolas, Jean-Philippe, e Truong Xuan Pham. "Peeling on Kerr Spacetime: Linear and Semi-linear Scalar Fields". Annales Henri Poincaré 20, n.º 10 (21 de agosto de 2019): 3419–70. http://dx.doi.org/10.1007/s00023-019-00832-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ziemian, Bogdan. "Mean value theorems for linear and semi-linear rotation invariant operators". Annales Polonici Mathematici 51, n.º 1 (1990): 341–48. http://dx.doi.org/10.4064/ap-51-1-341-348.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Debrabant, Kristian, e Espen R. Jakobsen. "Semi-Lagrangian schemes for linear and fully non-linear diffusion equations". Mathematics of Computation 82, n.º 283 (20 de dezembro de 2012): 1433–62. http://dx.doi.org/10.1090/s0025-5718-2012-02632-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Sophocleous, C., e R. Tracinà. "Differential invariants for quasi-linear and semi-linear wave-type equations". Applied Mathematics and Computation 202, n.º 1 (agosto de 2008): 216–28. http://dx.doi.org/10.1016/j.amc.2008.01.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Pandit, Purnima K. "Exact Solution of Semi-linear Fuzzy System". Journal of the Indian Mathematical Society 84, n.º 3-4 (1 de julho de 2017): 225. http://dx.doi.org/10.18311/jims/2017/15569.

Texto completo da fonte
Resumo:
In this paper we consider a semi-linear dynamical system with fuzzy initial condition. We discuss the results regarding the existence of the solution and obtain the best possible solution for such systems. We give a real life supportive illustration of population model, justify the need for fuzzy setup for the problem, and discuss the solution for it.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Millard, Salomon M., e Frans H. J. Kanfer. "Mixtures of Semi-Parametric Generalised Linear Models". Symmetry 14, n.º 2 (18 de fevereiro de 2022): 409. http://dx.doi.org/10.3390/sym14020409.

Texto completo da fonte
Resumo:
The mixture of generalised linear models (MGLM) requires knowledge about each mixture component’s specific exponential family (EF) distribution. This assumption is relaxed and a mixture of semi-parametric generalised linear models (MSPGLM) approach is proposed, which allows for unknown distributions of the EF for each mixture component while much of the parametric structure of the traditional MGLM is retained. Such an approach inherently allows for both symmetric and non-symmetric component distributions, frequently leading to non-symmetrical response variable distributions. It is assumed that the random component of each mixture component follows an unknown distribution of the EF. The specific member can either be from the standard class of distributions or from the broader set of admissible distributions of the EF which is accessible through the semi-parametric procedure. Since the inverse link functions of the mixture components are unknown, the MSPGLM estimates each mixture component’s inverse link function using a kernel smoother. The MSPGLM algorithm alternates the estimation of the regression parameters with the estimation of the inverse link functions. The properties of the proposed MSPGLM are illustrated through a simulation study on the separable individual components. The MSPGLM procedure is also applied on two data sets.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wu, Yaoqiang. "On (fuzzy) pseudo-semi-normed linear spaces". AIMS Mathematics 7, n.º 1 (2021): 467–77. http://dx.doi.org/10.3934/math.2022030.

Texto completo da fonte
Resumo:
<abstract><p>In this paper, we introduce the notion of pseudo-semi-normed linear spaces, following the concept of pseudo-norm which was presented by Schaefer and Wolff, and illustrate their relationship. On the other hand, we introduce the concept of fuzzy pseudo-semi-norm, which is weaker than the notion of fuzzy pseudo-norm initiated by N$ \tilde{\rm{a}} $d$ \tilde{\rm{a}} $ban. Moreover, we give some examples which are according to the commonly used $ t $-norms. Finally, we establish norm structures of fuzzy pseudo-semi-normed spaces and provide (fuzzy) topological spaces induced by (fuzzy) pseudo-semi-norms, and prove that the (fuzzy) topological spaces are (fuzzy) Hausdorff.</p></abstract>
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Shustin, Paz Fink, e Haim Avron. "Semi-Infinite Linear Regression and Its Applications". SIAM Journal on Matrix Analysis and Applications 43, n.º 1 (março de 2022): 479–511. http://dx.doi.org/10.1137/21m1411950.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Atia, M. J. "Semi-Classical Linear Functionals and Integral Representation". Integral Transforms and Special Functions 14, n.º 1 (fevereiro de 2003): 59–67. http://dx.doi.org/10.1080/10652460304542.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Li, Meng-Rong. "ON THE SEMI-LINEAR WAVE EQUATIONS (I)". Taiwanese Journal of Mathematics 2, n.º 3 (setembro de 1998): 329–45. http://dx.doi.org/10.11650/twjm/1500406973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gómez †, Juan A., Paul J. Bosch ‡ e Jorge Amaya. "Duality for inexact semi-infinite linear programming". Optimization 54, n.º 1 (fevereiro de 2005): 1–25. http://dx.doi.org/10.1080/02331930412331286595.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

KUNIMATSU, NOBORU, e HIDEKI SANO. "Compensator design of semi-linear parabolic systems". International Journal of Control 60, n.º 2 (agosto de 1994): 243–63. http://dx.doi.org/10.1080/00207179408921463.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Molchanov, Ilya, Vadim Shcherbakov e Sergei Zuyev. "Critical growth of a semi-linear process". Journal of Applied Probability 41, n.º 2 (junho de 2004): 355–67. http://dx.doi.org/10.1239/jap/1082999071.

Texto completo da fonte
Resumo:
This paper is motivated by the modelling of leaching of bacteria through soil. A semi-linear process Xt− may be used to describe the soil-drying process between rain showers. This is a backward recurrence time process that corresponds to the renewal process of instances of rain. If a bacterium moves according to another process h, then the fact that h(t) stays above Xt− means that the bacterium never hits a dry patch of soil and so survives. We describe a critical behaviour of h that separates the cases when survival is possible with a positive probability from the cases when this probability vanishes. An explicit formula for the survival probability is obtained in case h is linear and rain showers follow a Poisson process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Schraudolph, Nicol N., Martin Eldracher e Jürgen Schmidhuber. "Processing images by semi-linear predictability minimization". Network: Computation in Neural Systems 10, n.º 2 (janeiro de 1999): 133–69. http://dx.doi.org/10.1088/0954-898x_10_2_303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Cánovas, M. J., A. Y. Kruger, M. A. López, J. Parra e M. A. Théra. "Calmness Modulus of Linear Semi-infinite Programs". SIAM Journal on Optimization 24, n.º 1 (janeiro de 2014): 29–48. http://dx.doi.org/10.1137/130907008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Tapia Cuitiño, Luis Felipe, e Andrea Luigi Tironi. "Dual codes of product semi-linear codes". Linear Algebra and its Applications 457 (setembro de 2014): 114–53. http://dx.doi.org/10.1016/j.laa.2014.05.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Blömker, Dirk, Giuseppe Cannizzaro e Marco Romito. "Random initial conditions for semi-linear PDEs". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, n.º 3 (29 de janeiro de 2019): 1533–65. http://dx.doi.org/10.1017/prm.2018.157.

Texto completo da fonte
Resumo:
AbstractWe analyse the effect of random initial conditions on the local well-posedness of semi-linear PDEs, to investigate to what extent recent ideas on singular stochastic PDEs can prove useful in this framework.In particular, in some cases, stochastic initial conditions extend the validity of the fixed-point argument to larger spaces than deterministic initial conditions would allow, but in general, it is never possible to go beyond the threshold that is predicted by critical scaling, as in our general class of equations we are not exploiting any special structure present in the equation.We also give a specific example where the level of regularity for the fixed-point argument reached by random initial conditions is not yet critical, but it is already sharp in the sense that we find infinitely many random initial conditions of slightly lower regularity, where there is no solution at all. Thus criticality cannot be reached even by random initial conditions.The existence and uniqueness in a critical space is always delicate, but we can consider the Burgers equation in logarithmically sub-critical spaces, where existence and uniqueness hold, and again random initial conditions allow to extend the validity to spaces of lower regularity which are still logarithmically sub-critical.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wang, Feizhi, e Yisheng Huang. "On a semi-linear Schrödinger equation in". Nonlinear Analysis: Theory, Methods & Applications 62, n.º 5 (agosto de 2005): 833–48. http://dx.doi.org/10.1016/j.na.2005.03.087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Goberna, M. A., e M. A. López. "Optimality theory for semi-infinite linear programming∗". Numerical Functional Analysis and Optimization 16, n.º 5-6 (janeiro de 1995): 669–700. http://dx.doi.org/10.1080/01630569508816638.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Zhou, Jianjun, e Min Chen. "Spline estimators for semi-functional linear model". Statistics & Probability Letters 82, n.º 3 (março de 2012): 505–13. http://dx.doi.org/10.1016/j.spl.2011.11.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Molchanov, Ilya, Vadim Shcherbakov e Sergei Zuyev. "Critical growth of a semi-linear process". Journal of Applied Probability 41, n.º 02 (junho de 2004): 355–67. http://dx.doi.org/10.1017/s0021900200014352.

Texto completo da fonte
Resumo:
This paper is motivated by the modelling of leaching of bacteria through soil. A semi-linear process X t − may be used to describe the soil-drying process between rain showers. This is a backward recurrence time process that corresponds to the renewal process of instances of rain. If a bacterium moves according to another process h, then the fact that h(t) stays above X t − means that the bacterium never hits a dry patch of soil and so survives. We describe a critical behaviour of h that separates the cases when survival is possible with a positive probability from the cases when this probability vanishes. An explicit formula for the survival probability is obtained in case h is linear and rain showers follow a Poisson process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Pühl, H., e W. Schirotzek. "Linear semi-openness and the Lyusternik theorem". European Journal of Operational Research 157, n.º 1 (agosto de 2004): 16–27. http://dx.doi.org/10.1016/j.ejor.2003.08.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Mawhin, J., J. R. Ward e M. Willem. "Variational methods and semi-linear elliptic equations". Archive for Rational Mechanics and Analysis 95, n.º 3 (setembro de 1986): 269–77. http://dx.doi.org/10.1007/bf00251362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Friz, Peter, e Harald Oberhauser. "Rough path stability of (semi-)linear SPDEs". Probability Theory and Related Fields 158, n.º 1-2 (8 de fevereiro de 2013): 401–34. http://dx.doi.org/10.1007/s00440-013-0483-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Goberna, M. A. "Boundedness relations in linear semi-infinite programming". Advances in Applied Mathematics 8, n.º 1 (março de 1987): 53–68. http://dx.doi.org/10.1016/0196-8858(87)90005-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Ghate, Archis. "Inverse optimization in semi-infinite linear programs". Operations Research Letters 48, n.º 3 (maio de 2020): 278–85. http://dx.doi.org/10.1016/j.orl.2020.02.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia