Artigos de revistas sobre o tema "Self-assembly in water"

Siga este link para ver outros tipos de publicações sobre o tema: Self-assembly in water.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Self-assembly in water".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Mincheng Zhong, Mincheng Zhong, Ziqiang Wang Ziqiang Wang e and Yinmei Li and Yinmei Li. "Laser-accelerated self-assembly of colloidal particles at the water–air interface". Chinese Optics Letters 15, n.º 5 (2017): 051401–51405. http://dx.doi.org/10.3788/col201715.051401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Rogalska, E., M. Rogalski, T. Gulik-Krzywicki, A. Gulik e C. Chipot. "Self-assembly of chlorophenols in water". Proceedings of the National Academy of Sciences 96, n.º 12 (8 de junho de 1999): 6577–80. http://dx.doi.org/10.1073/pnas.96.12.6577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Roger, Kevin, Marianne Liebi, Jimmy Heimdal, Quoc Dat Pham e Emma Sparr. "Controlling water evaporation through self-assembly". Proceedings of the National Academy of Sciences 113, n.º 37 (29 de agosto de 2016): 10275–80. http://dx.doi.org/10.1073/pnas.1604134113.

Texto completo da fonte
Resumo:
Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

SMIT, B., P. A. J. HILBERS e K. ESSELINK. "COMPUTER SIMULATIONS OF SURFACTANT SELF ASSEMBLY". International Journal of Modern Physics C 04, n.º 02 (abril de 1993): 393–400. http://dx.doi.org/10.1142/s0129183193000422.

Texto completo da fonte
Resumo:
A simple oil/water/surfactant model is used to study the self-assembly of surfactants. The model contains only the most obvious elements: oil and water do not mix, and a surfactant is an amphiphilic molecule, i.e. one side of the molecule likes oil but dislikes water, the other side likes water but dislikes oil. Computer simulations on large oil/water/surfactant systems were performed on a network of 400 transputers using a parallel molecular dynamics algorithm. The simulations yield a complete micellar size distribution function. Furthermore, we observe (equilibrium) dynamical processes such as the entering of single surfactants into micelles, single surfactants leaving micelles, the fusion of two micelles, and the slow breakdown of a micelle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kancharla, Samhitha, Aditya Choudhary, Ryan T. Davis, Dengpan Dong, Dmitry Bedrov, Marina Tsianou e Paschalis Alexandridis. "GenX in water: Interactions and self-assembly". Journal of Hazardous Materials 428 (abril de 2022): 128137. http://dx.doi.org/10.1016/j.jhazmat.2021.128137.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Janlad, M., P. Boonnoy e J. Wong-ekkabut. "Self-Assembly of Aldehyde Lipids in Water". IOP Conference Series: Materials Science and Engineering 526 (8 de agosto de 2019): 012005. http://dx.doi.org/10.1088/1757-899x/526/1/012005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rudolph, Alan S., Jeffrey M. Calvert, Mary E. Ayers e Joel M. Schnur. "Water-free self-assembly of phospholipid tubules". Journal of the American Chemical Society 111, n.º 22 (outubro de 1989): 8516–17. http://dx.doi.org/10.1021/ja00204a033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lauceri, Rosaria, Massimo De Napoli, Angela Mammana, Sara Nardis, Andrea Romeo e Roberto Purrello. "Hierarchical self-assembly of water-soluble porphyrins". Synthetic Metals 147, n.º 1-3 (dezembro de 2004): 49–55. http://dx.doi.org/10.1016/j.synthmet.2004.05.031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hato, Masakatsu, Hiroyuki Minamikawa, Kaoru Tamada, Teruhiko Baba e Yoshikazu Tanabe. "Self-assembly of synthetic glycolipid/water systems". Advances in Colloid and Interface Science 80, n.º 3 (abril de 1999): 233–70. http://dx.doi.org/10.1016/s0001-8686(98)00085-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Odeh, Fadwa, Abeer Al-Bawab e Yuzhuo Li. "Self-Assembly Behavior of Benzotriazole in Water". Journal of Dispersion Science and Technology 31, n.º 2 (21 de janeiro de 2010): 162–68. http://dx.doi.org/10.1080/01932690903110186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Janlad, Minchakarn, Phansiri Boonnoy e Jirasak Wong-Ekkabut. "Self-Assembly of Lipid Peroxidation in Water". Biophysical Journal 118, n.º 3 (fevereiro de 2020): 89a. http://dx.doi.org/10.1016/j.bpj.2019.11.651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Percástegui, Edmundo G., Jesús Mosquera, Tanya K. Ronson, Alex J. Plajer, Marion Kieffer e Jonathan R. Nitschke. "Waterproof architectures through subcomponent self-assembly". Chemical Science 10, n.º 7 (2019): 2006–18. http://dx.doi.org/10.1039/c8sc05085f.

Texto completo da fonte
Resumo:
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Wang, Cuixia, Chao Zhang, Jin-Wu Jiang, Ning Wei, Harold S. Park e Timon Rabczuk. "Self-assembly of water molecules using graphene nanoresonators". RSC Advances 6, n.º 112 (2016): 110466–70. http://dx.doi.org/10.1039/c6ra22475j.

Texto completo da fonte
Resumo:
Inspired by macroscale self-assembly using the higher order resonant modes of Chladni plates, we use classical molecular dynamics to investigate the self-assembly of water molecules using graphene nanoresonators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Wen, Chenyu, Jie Ren, Jun Xia e Tao Gu. "Self-Assembly Oil–Water Perfusion in Electrowetting Displays". Journal of Display Technology 9, n.º 2 (fevereiro de 2013): 122–27. http://dx.doi.org/10.1109/jdt.2012.2236641.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

van Rijn, Patrick, Dainius Janeliunas, Aurélie M. Brizard, Marc C. A. Stuart, Ger J. M. Koper, Rienk Eelkema e Jan H. van Esch. "Self-assembly behaviour of conjugated terthiophenesurfactants in water". New J. Chem. 35, n.º 3 (2011): 558–67. http://dx.doi.org/10.1039/c0nj00760a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Chang, Shery L. Y., Philipp Reineck, Dewight Williams, Gary Bryant, George Opletal, Samir A. El-Demrdash, Po-Lin Chiu, Eiji Ōsawa, Amanda S. Barnard e Christian Dwyer. "Dynamic self-assembly of detonation nanodiamond in water". Nanoscale 12, n.º 9 (2020): 5363–67. http://dx.doi.org/10.1039/c9nr08984e.

Texto completo da fonte
Resumo:
We use direct imaging and dynamic light scattering to reveal the previously unknown dynamic self-assembly of detonation nanodiamond dispersions in water which have been purified without additional surface modification.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Yusa, Shin-ichi. "Self-Assembly of Cholesterol-Containing Water-Soluble Polymers". International Journal of Polymer Science 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/609767.

Texto completo da fonte
Resumo:
Self-assembly of amphiphilic polymers containing cholesteryl groups has proved to be attractive in the field of nanotechnology research. Some cholesterol derivatives are known to form ordered structures which indicate thermotropic and lyotropic liquid-crystalline, monolayers, multilayers, micelles, and liposomes. This paper involves the synthesis and characterization of various kinds of amphiphilic polymers bearing cholesteryl moieties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Mal, Prasenjit, e Jonathan R. Nitschke. "Sequential self-assembly of iron structures in water". Chemical Communications 46, n.º 14 (2010): 2417. http://dx.doi.org/10.1039/b920745g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Nevo, Iftach, Sergey Kapishnikov, Atalia Birman, Mingdong Dong, Sidney R. Cohen, Kristian Kjaer, Flemming Besenbacher, Henrik Stapelfeldt, Tamar Seideman e Leslie Leiserowitz. "Laser-induced aligned self-assembly on water surfaces". Journal of Chemical Physics 130, n.º 14 (14 de abril de 2009): 144704. http://dx.doi.org/10.1063/1.3108540.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Jiao, Tianyu, Guangcheng Wu, Yang Zhang, Libo Shen, Ye Lei, Cai‐Yun Wang, Albert C. Fahrenbach e Hao Li. "Self‐Assembly in Water with N‐Substituted Imines". Angewandte Chemie International Edition 59, n.º 42 (3 de junho de 2020): 18350–67. http://dx.doi.org/10.1002/anie.201910739.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Murphy, Connor, Yunqi Cao, Nelson Sepúlveda e Wei Li. "Quick self-assembly of bio-inspired multi-dimensional well-ordered structures induced by ultrasonic wave energy". PLOS ONE 16, n.º 2 (24 de fevereiro de 2021): e0246453. http://dx.doi.org/10.1371/journal.pone.0246453.

Texto completo da fonte
Resumo:
Bottom-up self-assembly of components, inspired by hierarchically self-regulating aggregation of small subunits observed in nature, provides a strategy for constructing two- or three-dimensional intriguing biomimetic materials via the spontaneous combination of discrete building blocks. Herein, we report the methods of ultrasonic wave energy-assisted, fast, two- and three-dimensional mesoscale well-ordered self-assembly of microfabricated building blocks (100 μm in size). Mechanical vibration energy-driven self-assembly of microplatelets at the water-air interface of inverted water droplets is demonstrated, and the real-time formation process of the patterned structure is dynamically explored. 40 kHz ultrasonic wave is transferred into microplatelets suspended in a water environment to drive the self-assembly of predesigned well-ordered structures. Two-dimensional self-assembly of microplatelets inside the water phase with a large patterned area is achieved. Stable three-dimensional multi-layered self-assembled structures are quickly formed at the air-water interface. These demonstrations aim to open distinctive and effective ways for new two-dimensional surface coating technology with autonomous organization strategy, and three-dimensional complex hierarchical architectures built by the bottom-up method and commonly found in nature (such as nacre, bone or enamel, etc.).
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Domínguez, Eva, e Antonio Heredia. "Self-Assembly in Plant Barrier Biopolymers". Zeitschrift für Naturforschung C 54, n.º 1-2 (1 de fevereiro de 1999): 141–43. http://dx.doi.org/10.1515/znc-1999-1-222.

Texto completo da fonte
Resumo:
A new procedure is given to isolate the components that constitute the translucent lines present in some layered plant cuticles. These electron-translucent lines are mainly composed of fatty acids and n-alkanes. This waxy material is capable to form molecular bilayers with a constant thickness of approximately 5 nm. This special arrangement have a strong contribution in water transport across the cuticle
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Murphy, Thomas, Robert Hayes, Silvia Imberti, Gregory G. Warr e Rob Atkin. "Ionic liquid nanostructure enables alcohol self assembly". Physical Chemistry Chemical Physics 18, n.º 18 (2016): 12797–809. http://dx.doi.org/10.1039/c6cp01739h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Astanov, Salih, Guzal Kasimova, Akbar Abrorov e Bakhtigul Fayziyeva. "Self-assembly of tartrazine molecules in water- dimethylsulphaxide solution". IOP Conference Series: Earth and Environmental Science 848, n.º 1 (1 de setembro de 2021): 012095. http://dx.doi.org/10.1088/1755-1315/848/1/012095.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Vladkova, Radka. "Chlorophyll a Self-assembly in Polar Solvent-Water Mixtures †". Photochemistry and Photobiology 71, n.º 1 (1 de maio de 2007): 71–83. http://dx.doi.org/10.1562/0031-8655(2000)0710071casaip2.0.co2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Vladkova, Radka. "Chlorophyll a Self-assembly in Polar Solvent–Water Mixtures†". Photochemistry and Photobiology 71, n.º 1 (2000): 71. http://dx.doi.org/10.1562/0031-8655(2000)071<0071:casaip>2.0.co;2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Helttunen, Kaisa, e Patrick Shahgaldian. "Self-assembly of amphiphilic calixarenes and resorcinarenes in water". New Journal of Chemistry 34, n.º 12 (2010): 2704. http://dx.doi.org/10.1039/c0nj00123f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Kimura, Shunsaku, Do-Hyung Kim, Junji Sugiyama e Yukio Imanishi. "Vesicular Self-Assembly of a Helical Peptide in Water". Langmuir 15, n.º 13 (junho de 1999): 4461–63. http://dx.doi.org/10.1021/la981673m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Jiang, Feng, e You-Lo Hsieh. "Holocellulose Nanocrystals: Amphiphilicity, Oil/Water Emulsion, and Self-Assembly". Biomacromolecules 16, n.º 4 (20 de março de 2015): 1433–41. http://dx.doi.org/10.1021/acs.biomac.5b00240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Aguiló, Elisabet, Artur J. Moro, Raquel Gavara, Ignacio Alfonso, Yolanda Pérez, Francesco Zaccaria, Célia Fonseca Guerra et al. "Reversible Self-Assembly of Water-Soluble Gold(I) Complexes". Inorganic Chemistry 57, n.º 3 (28 de outubro de 2017): 1017–28. http://dx.doi.org/10.1021/acs.inorgchem.7b02343.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Pérez-Hernández, Natalia, Diego Fort, Cirilo Pérez e Julio D. Martín. "Water-Induced Molecular Self-Assembly of Hollow Tubular Crystals". Crystal Growth & Design 11, n.º 4 (6 de abril de 2011): 1054–61. http://dx.doi.org/10.1021/cg101227u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Peuronen, Anssi, Esa Lehtimäki e Manu Lahtinen. "Self-Assembly of Water-Mediated Supramolecular Cationic Archimedean Solids". Crystal Growth & Design 13, n.º 10 (19 de setembro de 2013): 4615–22. http://dx.doi.org/10.1021/cg401246n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hou, Qiao, Chaorui Xue, Ning Li, Huiqi Wang, Qing Chang, Hantao Liu, Jinlong Yang e Shengliang Hu. "Self-assembly carbon dots for powerful solar water evaporation". Carbon 149 (agosto de 2019): 556–63. http://dx.doi.org/10.1016/j.carbon.2019.04.083.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Bordin, José Rafael, Leandro B. Krott e Marcia C. Barbosa. "Self-Assembly and Water-like Anomalies in Janus Nanoparticles". Langmuir 31, n.º 31 (29 de julho de 2015): 8577–82. http://dx.doi.org/10.1021/acs.langmuir.5b01555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Grawe, Thomas, Thomas Schrader, Reza Zadmard e Arno Kraft. "Self-Assembly of Ball-Shaped Molecular Complexes in Water". Journal of Organic Chemistry 67, n.º 11 (maio de 2002): 3755–63. http://dx.doi.org/10.1021/jo025513y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Kaneko, Daisuke, Ulf Olsson e Kazutami Sakamoto. "Self-Assembly in SomeN-Lauroyl-l-glutamate/Water Systems". Langmuir 18, n.º 12 (junho de 2002): 4699–703. http://dx.doi.org/10.1021/la0117653.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hamano, Ryo, e Hiroaki Suzuki. "TEMPLATED SELF-ASSEMBLY OF MICROCOMPONENTS USING WATER-OIL INTERFACE". Proceedings of the Symposium on Micro-Nano Science and Technology 2019.10 (2019): 19pm5PN348. http://dx.doi.org/10.1299/jsmemnm.2019.10.19pm5pn348.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Wang, Yiguang, Ruiqi Wang, Xiaoyan Lu, Wanliang Lu, Chunling Zhang e Wei Liang. "Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs". Pharmaceutical Research 27, n.º 2 (22 de dezembro de 2009): 361–70. http://dx.doi.org/10.1007/s11095-009-0029-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Sun, Yan, Chao-Guo Yan, Yong Yao, Ying Han e Ming Shen. "Self-Assembly and Metallization of Resorcinarene Microtubes in Water". Advanced Functional Materials 18, n.º 24 (22 de dezembro de 2008): 3981–90. http://dx.doi.org/10.1002/adfm.200800843.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hato, Masakatsu, Hiroyuki Minamikawa, Kaoru Tamada, Teruhiko Baba e Yoshikazu Tanabe. "ChemInform Abstract: Self-Assembly of Synthetic Glycolipid/Water Systems". ChemInform 30, n.º 35 (13 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199935322.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Duan, Hongwei, Dayang Wang, Dirk G. Kurth e Helmuth Möhwald. "Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces". Angewandte Chemie International Edition 43, n.º 42 (20 de outubro de 2004): 5639–42. http://dx.doi.org/10.1002/anie.200460920.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Karlsson, S., R. Friman, B. Lindström e S. Backlund. "Self-Assembly in the System Decanoic Acid–Butylamine–Water". Journal of Colloid and Interface Science 243, n.º 1 (novembro de 2001): 241–47. http://dx.doi.org/10.1006/jcis.2001.7836.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Corbellini, Francesca, Ronald M. A. Knegtel, Peter D. J. Grootenhuis, Mercedes Crego-Calama e David N. Reinhoudt. "Water-Soluble Molecular Capsules: Self-Assembly and Binding Properties". Chemistry - A European Journal 11, n.º 1 (janeiro de 2005): 298–307. http://dx.doi.org/10.1002/chem.200400849.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Duan, Hongwei, Dayang Wang, Dirk G. Kurth e Helmuth Möhwald. "Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces". Angewandte Chemie 116, n.º 42 (20 de outubro de 2004): 5757–60. http://dx.doi.org/10.1002/ange.200460920.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ranjan, Rahul, Pasenjit Das, Kamla Rawat, V. K. Aswal, J. Kohlbrecher e H. B. Bohidar. "Self-assembly and gelation of TX-100 in water". Colloid and Polymer Science 295, n.º 5 (4 de abril de 2017): 903–9. http://dx.doi.org/10.1007/s00396-017-4078-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Gudkovskikh, Sergey V., e Mikhail V. Kirov. "Cubic water clusters as building blocks for self-assembly". Chemical Physics 572 (agosto de 2023): 111947. http://dx.doi.org/10.1016/j.chemphys.2023.111947.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Brittain, Tyler J., Samuel D. Fontaine, Coleman Swaim, Daniel R. Marzolf e Oleksandr Kokhan. "Control of Protein Self-Assembly with Water-Soluble Porphyrins". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 481a. http://dx.doi.org/10.1016/j.bpj.2018.11.2595.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bera, Santu, Sibaprasad Maity e Debasish Haldar. "Assembly of encapsulated water in hybrid bisamides: helical and zigzag water chains". CrystEngComm 17, n.º 7 (2015): 1569–75. http://dx.doi.org/10.1039/c4ce01950d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Ji, Tan, Lei Xia, Wei Zheng, Guang-Qiang Yin, Tao Yue, Xiaopeng Li, Weian Zhang, Xiao-Li Zhao e Hai-Bo Yang. "Porphyrin-functionalized coordination star polymers and their potential applications in photodynamic therapy". Polymer Chemistry 10, n.º 45 (2019): 6116–21. http://dx.doi.org/10.1039/c9py01391a.

Texto completo da fonte
Resumo:
We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Carson, George A., e Steve Granick. "Self-assembly of octadecyltrichlorosilane monolayers on mica". Journal of Materials Research 5, n.º 8 (agosto de 1990): 1745–51. http://dx.doi.org/10.1557/jmr.1990.1745.

Texto completo da fonte
Resumo:
A method is described to deposit a securely attached, self-assembled monolayer of octadecyltrichlorosilane (OTS) on the surface of freshly cleaved muscovite mica. Comparison of the infrared methylene spectra with those of closely packed Langmuir-Blodgett films implies that the surface coverage of the OTS films was a fraction 0.8–0.9 that of films formed by Langmuir-Blodgett (LB) methods. However, LB monolayers are less securely attached to the substrate. The contact angle of water on these self-assembled monolayers remained over 100° for over 24 h and it suffered no noticeable degradation after prolonged reflux in cyclohexane. The method to form an OTS monolayer on mica involves three steps; first, ion exchange of the native K+ ions of cleaved mica for H+ ions; second, control of the quantity of resulting water on the mica surface; third, adsorption and surface polymerization of octadecyltrichlorosilane (OTS) by self-assembly from dilute cyclohexane solution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia