Artigos de revistas sobre o tema "Segmented filamentous bacteria (SFB)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Segmented filamentous bacteria (SFB)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Meyerholz, David K., Thomas J. Stabel e Norman F. Cheville. "Segmented Filamentous Bacteria Interact with Intraepithelial Mononuclear Cells". Infection and Immunity 70, n.º 6 (junho de 2002): 3277–80. http://dx.doi.org/10.1128/iai.70.6.3277-3280.2002.
Texto completo da fonteWilmore, Joel, Gregory Sonnenberg, David Artis e David Allman. "Segmented filamentous bacteria induce systemic IgA responses to commensal bacteria (MUC4P.854)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 133.30. http://dx.doi.org/10.4049/jimmunol.192.supp.133.30.
Texto completo da fonteSnel, J., C. C. Hermsen, H. J. Smits, N. A. Bos, WMC Eling, J. J. Cebra e P. J. Heidt. "Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice". Canadian Journal of Microbiology 44, n.º 12 (1 de dezembro de 1998): 1177–82. http://dx.doi.org/10.1139/w98-122.
Texto completo da fonteGrześkowiak, Łukasz, Beatriz Martínez-Vallespín, Jürgen Zentek e Wilfried Vahjen. "A Preliminary Survey of the Distribution of Segmented Filamentous Bacteria in the Porcine Gastrointestinal Tract". Current Microbiology 78, n.º 10 (3 de setembro de 2021): 3757–61. http://dx.doi.org/10.1007/s00284-021-02636-0.
Texto completo da fonteMetwaly, A., J. Calasan, N. Waldschmitt, S. Khaloian, D. Häcker, M. Ahmed, L. F. Butto et al. "P059 Diet controls segmented filamentous bacteria in driving Crohn’s disease-like inflammation in TNFdeltaARE mice". Journal of Crohn's and Colitis 16, Supplement_1 (1 de janeiro de 2022): i168. http://dx.doi.org/10.1093/ecco-jcc/jjab232.188.
Texto completo da fonteSano, Teruyuki, Yi Yang, Gretchen Diehl, Alessandra Chen, Daniel H. Kaplan e Dan R. Littman. "Multi-step Th17 differentiation in response to segmented filamentous bacteria in the mouse intestine". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 67.1. http://dx.doi.org/10.4049/jimmunol.196.supp.67.1.
Texto completo da fonteKumar, Pawan, Jeremy McAleer, Waleed Elsegeiny, Rachel Armentrout, Derek Pociask e Jay Kolls. "Hyper Th17 responses in IL-17R knockout is regulated by segmented filamentous bacteria (SFB) (MUC4P.857)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 133.33. http://dx.doi.org/10.4049/jimmunol.192.supp.133.33.
Texto completo da fonteUmesaki, Yoshinori, Hiromi Setoyama, Satoshi Matsumoto, Akemi Imaoka e Kikuji Itoh. "Differential Roles of Segmented Filamentous Bacteria and Clostridia in Development of the Intestinal Immune System". Infection and Immunity 67, n.º 7 (1 de julho de 1999): 3504–11. http://dx.doi.org/10.1128/iai.67.7.3504-3511.1999.
Texto completo da fonteTan, Tze Guan, Esen Sefik, Naama Geva-Zatorsky, Lindsay Kua, Debdut Naskar, Fei Teng, Lesley Pasman et al. "Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice". Proceedings of the National Academy of Sciences 113, n.º 50 (23 de novembro de 2016): E8141—E8150. http://dx.doi.org/10.1073/pnas.1617460113.
Texto completo da fonteKlaasen, H. L. B. M., J. P. Koopman, M. E. Van Den Brink, M. H. Bakker, F. G. J. Poelma e A. C. Beynen. "Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species". Laboratory Animals 27, n.º 2 (1 de abril de 1993): 141–50. http://dx.doi.org/10.1258/002367793780810441.
Texto completo da fonteKang, Byunghyun, Eun-Do Kim, Bong-Hyun Kim, Tomohiro Tomachi, Jianping He e Brian L. Kelsall. "Segmented filamentous bacteria (SFB) drives enhanced T cell-dependent IgA and IgG2b responses in Peyer’s patches". Journal of Immunology 210, n.º 1_Supplement (1 de maio de 2023): 218.10. http://dx.doi.org/10.4049/jimmunol.210.supp.218.10.
Texto completo da fonteKitagami, Y., N. Kanzaki e Y. Matsuda. "First report of segmented filamentous bacteria associated with Rhigonema sp. (Nematoda: Rhigonematidae) dwelling in hindgut of Riukiaria sp. (Diplopoda: Xystodesmidae)". Helminthologia 56, n.º 3 (1 de setembro de 2019): 219–28. http://dx.doi.org/10.2478/helm-2019-0018.
Texto completo da fonteTalham, Gwen L., Han-Qing Jiang, Nicolaas A. Bos e John J. Cebra. "Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System". Infection and Immunity 67, n.º 4 (1 de abril de 1999): 1992–2000. http://dx.doi.org/10.1128/iai.67.4.1992-2000.1999.
Texto completo da fonteGoto, Yoshiyuki, Yoshinori Umesaki, Yoshimi Benno e Hiroshi Kiyono. "Specific comensal bacteria modulate epithelial glycosylaion (59.5)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 59.5. http://dx.doi.org/10.4049/jimmunol.186.supp.59.5.
Texto completo da fonteYamauchi, Koh-En, e Johannes Snel. "Transmission Electron Microscopic Demonstration of Phagocytosis and Intracellular Processing of Segmented Filamentous Bacteria by Intestinal Epithelial Cells of the Chick Ileum". Infection and Immunity 68, n.º 11 (1 de novembro de 2000): 6496–504. http://dx.doi.org/10.1128/iai.68.11.6496-6504.2000.
Texto completo da fonteMcCarthy, Ú., R. Pettinello, L. Feehan, YM Ho e P. White. "Experimental transmission of segmented filamentous bacteria (SFB) in rainbow trout Oncorhynchus mykiss". Diseases of Aquatic Organisms 119, n.º 1 (12 de abril de 2016): 45–57. http://dx.doi.org/10.3354/dao02977.
Texto completo da fonteGriffith, Thomas, Javier Cabrera, Jeffrey Babcock e Vladimir Badovinac. "Differential function of Ag-specific CD4 T cells from sepsis-induced lymphopenia is influenced by gut microbiota (MPF2P.744)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 63.3. http://dx.doi.org/10.4049/jimmunol.194.supp.63.3.
Texto completo da fonteGauguet, Stefanie, Samantha D'Ortona, Kathryn Ahnger-Pier, Biyan Duan, Neeraj K. Surana, Roger Lu, Colette Cywes-Bentley et al. "Intestinal Microbiota of Mice Influences Resistance to Staphylococcus aureus Pneumonia". Infection and Immunity 83, n.º 10 (27 de julho de 2015): 4003–14. http://dx.doi.org/10.1128/iai.00037-15.
Texto completo da fonteLadinsky, Mark S., Leandro P. Araujo, Xiao Zhang, John Veltri, Marta Galan-Diez, Salima Soualhi, Carolyn Lee et al. "Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis". Science 363, n.º 6431 (7 de março de 2019): eaat4042. http://dx.doi.org/10.1126/science.aat4042.
Texto completo da fonteBurgess, Stacey L., Mahmoud Saleh, Carrie A. Cowardin, Erica Buonomo, Zannatun Noor, Koji Watanabe, Mayuresh Abhyankar, Stephane Lajoie, Marsha Wills-Karp e William A. Petri. "Role of Serum Amyloid A, Granulocyte-Macrophage Colony-Stimulating Factor, and Bone Marrow Granulocyte-Monocyte Precursor Expansion in Segmented Filamentous Bacterium-Mediated Protection from Entamoeba histolytica". Infection and Immunity 84, n.º 10 (25 de julho de 2016): 2824–32. http://dx.doi.org/10.1128/iai.00316-16.
Texto completo da fonteMarino, Naomi Claudette Rodriguez, Dormarie E. Rivera-Rodriguez, Charlotte J. Royer, Madelyn Yaceczko e Luisa Cervantes-Barragan. "Dietary fiber and Segmented Filamentous Bacteria interaction with intestinal epithelial cells supports the development of CD4 +CD8αα +intraepithelial T cells". Journal of Immunology 210, n.º 1_Supplement (1 de maio de 2023): 150.02. http://dx.doi.org/10.4049/jimmunol.210.supp.150.02.
Texto completo da fonteJiang, Han-Qing, Nicolaas A. Bos e John J. Cebra. "Timing, Localization, and Persistence of Colonization by Segmented Filamentous Bacteria in the Neonatal Mouse Gut Depend on Immune Status of Mothers and Pups". Infection and Immunity 69, n.º 6 (1 de junho de 2001): 3611–17. http://dx.doi.org/10.1128/iai.69.6.3611-3617.2001.
Texto completo da fontePamp, Sünje J., Eoghan D. Harrington, Stephen R. Quake, David A. Relman e Paul C. Blainey. "Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)". Genome Research 22, n.º 6 (20 de março de 2012): 1107–19. http://dx.doi.org/10.1101/gr.131482.111.
Texto completo da fonteGhilardi, Nico, Jennifer Cox e Vincent Shih. "Homeostatic IL-23R signaling limits TH17 response through IL-22-mediated containment of commensal microbiota (MUC9P.818)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 199.5. http://dx.doi.org/10.4049/jimmunol.192.supp.199.5.
Texto completo da fonteMcAleer, Jeremy, Nikki Nguyen, Kong Chen, Rachel Armentrout, Derek Pociask, David Ricks, Matthew Binnie et al. "Pulmonary Th17 immunity is regulated by regenerating islet-derived III-gamma and the gut microbiome (MUC4P.826)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 133.2. http://dx.doi.org/10.4049/jimmunol.192.supp.133.2.
Texto completo da fonteMcKarns, Susan, e Patrick Miller. "TNFR2 regulates gut commensal microbiota tocontrol sex-biased spontaneous experimental autoimmune encephalomyelitis (BA6P.138)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 114.19. http://dx.doi.org/10.4049/jimmunol.194.supp.114.19.
Texto completo da fonteSeo, Goo-Young, Jr-Wen Shui, Zbigniew Mikulski, Qingyang Wang, Daisuke Takahashi, Daniel A. Giles, Hitoshi Iwaya et al. "CD160-HVEM signaling in intestinal epithelial cells modulates gut microbial homeostasis". Journal of Immunology 202, n.º 1_Supplement (1 de maio de 2019): 191.11. http://dx.doi.org/10.4049/jimmunol.202.supp.191.11.
Texto completo da fonteFelix, Krysta M., Ivan Jaimez, Thuy-Vi Nguyen, Heqing Ma, Walid Raslan, Christina Klinger, Kristian Doyle e Hsin-Jung Joyce Wu. "Gut microbiota enhances neutrophil resolution in immunocompromised hosts to improve response to pneumococcal pneumonia." Journal of Immunology 200, n.º 1_Supplement (1 de maio de 2018): 173.10. http://dx.doi.org/10.4049/jimmunol.200.supp.173.10.
Texto completo da fonteKumar, Pawan, Leticia Monin, Paticia Castillo, Waleed Abdel Wahab Elsegeiny, William Horne, Taylor John Eddens, Misty Good et al. "Intestinal IL-17R signaling modulates commensal microbiota by regulating expression of Nox1 and Pigr". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 207.2. http://dx.doi.org/10.4049/jimmunol.196.supp.207.2.
Texto completo da fonteCebra, John J., Sangeeta Bhargava Periwal, Gwen Lee, Fan Lee e Khushroo E. Shroff. "Development and Maintenance of the Gut-Associated Lymphoid Tissue (Galt): the Roles of Enteric Bacteria and Viruses". Developmental Immunology 6, n.º 1-2 (1998): 13–18. http://dx.doi.org/10.1155/1998/68382.
Texto completo da fonteAggor, Felix E. Y., Chunsheng Zhou, Darryl Abbott, Javonn Musgrove, Vincent Bruno, Timothy W. Hand e Sarah L. Gaffen. "Th17-driven immunity to oral candidiasis is dependent on the microbiome and can be triggered by mono-colonization with segmented filamentous bacteria." Journal of Immunology 208, n.º 1_Supplement (1 de maio de 2022): 115.18. http://dx.doi.org/10.4049/jimmunol.208.supp.115.18.
Texto completo da fonteSano, Teruyuki, Zachary White e Ivan Cabrera. "Commensal-specific CD4 T cells can promote inflammation in the central nervous system via molecular mimicry". Journal of Immunology 210, n.º 1_Supplement (1 de maio de 2023): 227.09. http://dx.doi.org/10.4049/jimmunol.210.supp.227.09.
Texto completo da fonteBukina, Yu V., L. Ya Fedoniuk, G. D. Koval, Yu O. Shekhovtsova, A. M. Kamyshnyi, A. O. Gubar e V. O. Gubka. "Salmonella-induced changes in the level of key immunoregulatory bacteria affect the transcriptional activity of the Foxp3 and RORgt genes in the gut-associated lymphoid tissue of rats". Russian Journal of Infection and Immunity 10, n.º 4 (27 de novembro de 2020): 671–85. http://dx.doi.org/10.15789/2220-7619-sic-1151.
Texto completo da fonteBlock, Katharine, e Haochu Huang. "The gut microbiota regulates K/BxN autoimmune arthritis independent of Th17 and IL-17 (BA6P.121)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 114.2. http://dx.doi.org/10.4049/jimmunol.194.supp.114.2.
Texto completo da fonteLiao, Ningbo, Yeshi Yin, Guochang Sun, Charlie Xiang, Donghong Liu, Hongwei D. Yu e Xin Wang. "Colonization and distribution of segmented filamentous bacteria (SFB) in chicken gastrointestinal tract and their relationship with host immunity". FEMS Microbiology Ecology 81, n.º 2 (18 de abril de 2012): 395–406. http://dx.doi.org/10.1111/j.1574-6941.2012.01362.x.
Texto completo da fonteSeo, Goo-Young, Jr-Wen Shui, Zbigniew Mikulski, Hilde Cheroutre, Pyeung-Hyeun Kim e Mitchell Kronenberg. "HVEM expression by intestinal epithelial cells modulates the microbiome and epithelial immunity". Journal of Immunology 198, n.º 1_Supplement (1 de maio de 2017): 200.10. http://dx.doi.org/10.4049/jimmunol.198.supp.200.10.
Texto completo da fonteBarin, Jobert, Nicola Diny, Elizabeth Gebremariam, Monica Talor, Djahida Bedja, David Kass, Daniel Peterson, Noel Rose e Daniela Cihakova. "Commensal microbiota regulate inflammatory cardiac remodeling (BA6P.126)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 114.7. http://dx.doi.org/10.4049/jimmunol.194.supp.114.7.
Texto completo da fonteSofi, Mohammed, Radhika Gudi, Subha Karumuthil-Melethil, Nicolas Perez, Benjamin Johnson e Chenthamarakshan Vasu. "Influence of drinking water pH on gut microbiota and type 1 diabetes (P4069)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 127.6. http://dx.doi.org/10.4049/jimmunol.190.supp.127.6.
Texto completo da fonteFlannigan, K. L., M. Johnston, S. L. Erickson, K. Nieves, H. Jijon, M. Gallo, K. McCoy e S. A. Hirota. "A14 GUT-RESIDING BACTERIA CAN SHAPE HOST DRUG METABOLISM IN THE SMALL INTESTINE THROUGH AN INNATE LYMPHOID CELL-IL-22 DRIVEN AXIS". Journal of the Canadian Association of Gastroenterology 3, Supplement_1 (fevereiro de 2020): 16–17. http://dx.doi.org/10.1093/jcag/gwz047.013.
Texto completo da fonteXu, Mo, Yi Yang, Maria Pokrovskii, Carolina Galan e Dan R. Littman. "Balance of Commensal Bacteria-Specific Th17 and RORγt+ Treg Cells in Intestinal Homeostasis and Inflammation". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 137.3. http://dx.doi.org/10.4049/jimmunol.196.supp.137.3.
Texto completo da fonteJellbauer, Stefan, Araceli Perez Lopez, Judith Behnsen, Nina Gao, Thao Nguyen, Clodagh Murphy, Robert A. Edwards e Manuela Raffatellu. "Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium". Infection and Immunity 84, n.º 9 (5 de julho de 2016): 2639–52. http://dx.doi.org/10.1128/iai.00132-16.
Texto completo da fonteSalvador, Ryan S., Reiko Horai, Jihong Tang, Carlos Zárate-Bladés, Yingyos Jittayasothorn, Kikuji Itoh, Yoshinori Umesaki e Rachel R. Caspi. "Gut microbiota as a source of signals that trigger spontaneous ocular autoimmunity." Journal of Immunology 198, n.º 1_Supplement (1 de maio de 2017): 218.10. http://dx.doi.org/10.4049/jimmunol.198.supp.218.10.
Texto completo da fonteUpadhyay, Vaibhav, e Yang-Xin Fu. "Lymphotoxin reduces commensal diversity to enable diet induced obesity (120.2)". Journal of Immunology 188, n.º 1_Supplement (1 de maio de 2012): 120.2. http://dx.doi.org/10.4049/jimmunol.188.supp.120.2.
Texto completo da fonteCastillo, Patricia, Pawan Kumar e Jay K. Kolls. "Dysregulation of intestinal IL17 signaling & the microbiome exacerbate autoimmune neuroinflammation." Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 118.4. http://dx.doi.org/10.4049/jimmunol.196.supp.118.4.
Texto completo da fonteManfredo Vieira, SILVIO, William Ruff, Michael Hiltensperger, Andrew Yu, Andrew Goodman e Martin Kriegel. "Gut commensal dependence of autoreactivity and Th17 cells in systemic autoimmunity (MUC9P.740)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 205.4. http://dx.doi.org/10.4049/jimmunol.194.supp.205.4.
Texto completo da fonteSINGH, AMIR KUMAR, Ritesh Kumar, John F. Brooks, Kevin P. Conlon, Venkatesha Basrur, Zhe Chen, Xialin Han, Lora Hooper, Ezra Burstein e Venuprasad K. "RORγt-Raftlin1 complex regulates the pathogenicity of Th17 cells and intestinal inflammation." Journal of Immunology 210, n.º 1_Supplement (1 de maio de 2023): 154.03. http://dx.doi.org/10.4049/jimmunol.210.supp.154.03.
Texto completo da fonteKowalczyk, Paulina, Anna Strzępa e Marian Szczepanik. "Perinatal treatment of parents with the broad-spectrum antibiotic enrofloxacin aggravates contact sensitivity in adult offspring mice". Pharmacological Reports 73, n.º 2 (22 de janeiro de 2021): 664–71. http://dx.doi.org/10.1007/s43440-021-00217-3.
Texto completo da fonteDiehl, Gretchen, Andrea Hill-McAlester, Karina Ochoa e Carolina Galan. "CX3CR1 mononuclear phagocytes utilize the microbiota to promote balanced intestinal immune responses". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 136.7. http://dx.doi.org/10.4049/jimmunol.196.supp.136.7.
Texto completo da fonteMao, Kairui, Antonio Baptista, Nicolas Bouladoux, Andrew J. Martins, Samira Tamoutounour, Jacquice Davis, Yuefeng Huang, Michael Y. Gerner, Yasmine Belkaid e Ronald N. Germain. "Sequential activity of innate and adaptive lymphocytes supports non-inflammatory gut microbial commensalism". Journal of Immunology 198, n.º 1_Supplement (1 de maio de 2017): 200.14. http://dx.doi.org/10.4049/jimmunol.198.supp.200.14.
Texto completo da fonteXu, Chunliang, Sungkyun Lee e Paul S. Frenette. "The Gut Microbiome Regulates Psychological Stress-Induced Inflammation in Sickle Cell Disease". Blood 134, Supplement_1 (13 de novembro de 2019): 205. http://dx.doi.org/10.1182/blood-2019-122331.
Texto completo da fonte