Literatura científica selecionada sobre o tema "Segmentation des pores"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Segmentation des pores".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Segmentation des pores"
Sintorn, Ida-Maria, Stina Svensson, Maria Axelsson e Gunilla Borgefors. "Segmentation of individual pores in 3D paper images". Nordic Pulp & Paper Research Journal 20, n.º 3 (1 de agosto de 2005): 316–19. http://dx.doi.org/10.3183/npprj-2005-20-03-p316-319.
Texto completo da fonteBauer, Benjamin, Xiaohao Cai, Stephan Peth, Katja Schladitz e Gabriele Steidl. "Variational-based segmentation of bio-pores in tomographic images". Computers & Geosciences 98 (janeiro de 2017): 1–8. http://dx.doi.org/10.1016/j.cageo.2016.09.013.
Texto completo da fonteLiu, Lei, Qiaoling Han, Yue Zhao e Yandong Zhao. "A Novel Method Combining U-Net with LSTM for Three-Dimensional Soil Pore Segmentation Based on Computed Tomography Images". Applied Sciences 14, n.º 8 (16 de abril de 2024): 3352. http://dx.doi.org/10.3390/app14083352.
Texto completo da fonteYosifov, Miroslav, Patrick Weinberger, Bernhard Plank, Bernhard Fröhler, Markus Hoeglinger, Johann Kastner e Christoph Heinzl. "Segmentation of pores in carbon fiber reinforced polymers using the U-Net convolutional neural network". Acta Polytechnica CTU Proceedings 42 (12 de outubro de 2023): 87–93. http://dx.doi.org/10.14311/app.2023.42.0087.
Texto completo da fonteTomažinčič, Dejan, Žiga Virk, Peter Marijan Kink, Gregor Jerše e Jernej Klemenc. "Predicting the Fatigue Life of an AlSi9Cu3 Porous Alloy Using a Vector-Segmentation Technique for a Geometric Parameterisation of the Macro Pores". Metals 11, n.º 1 (31 de dezembro de 2020): 72. http://dx.doi.org/10.3390/met11010072.
Texto completo da fonteTong, Tong, Yan Cai, Da Wei Sun e Peng Liu. "Automatic Segmentation of Pores in Weld Images Based on Transition Region Extraction". Applied Mechanics and Materials 217-219 (novembro de 2012): 1964–67. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1964.
Texto completo da fonteYoon, Huisu, Semin Kim, Jongha Lee e Sangwook Yoo. "Deep-Learning-Based Morphological Feature Segmentation for Facial Skin Image Analysis". Diagnostics 13, n.º 11 (29 de maio de 2023): 1894. http://dx.doi.org/10.3390/diagnostics13111894.
Texto completo da fonteSong, Wenlong, Junyu Li, Kexin Li, Jingxu Chen e Jianping Huang. "An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model". Forests 11, n.º 9 (1 de setembro de 2020): 954. http://dx.doi.org/10.3390/f11090954.
Texto completo da fonteSoboleva, N. N., e A. N. Mushnikov. "Determination of the volume fraction of primary carbides in the microstructure of composite coatings using semantic segmentation". Frontier materials & technologies, n.º 3 (2023): 95–102. http://dx.doi.org/10.18323/2782-4039-2023-3-65-9.
Texto completo da fonteWen, Hao, Chang Huang e Shengmin Guo. "The Application of Convolutional Neural Networks (CNNs) to Recognize Defects in 3D-Printed Parts". Materials 14, n.º 10 (15 de maio de 2021): 2575. http://dx.doi.org/10.3390/ma14102575.
Texto completo da fonteTeses / dissertações sobre o assunto "Segmentation des pores"
DELERUE, JEAN FRANCOIS. "Segmentation 3d, application a l'extraction de reseaux de pores et a la caracterisation hydrodynamique des sols". Paris 11, 2001. http://www.theses.fr/2001PA112141.
Texto completo da fonteDing, Nan. "3D Modeling of the Lamina Cribrosa in OCT Data". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS148.
Texto completo da fonteThe lamina cribrosa (LC) is a 3D collagenous mesh in theoptic nerve head that plays a crucial role in themechanisms and diagnosis of glaucoma, the second leading cause of blindness in the world. The LC is composed of so-called “pores”, namely axonal paths within the collagenous mesh, through which the axons pass to reach the brain. In vivo 3D observation of the LC pores is now possible thanks to advances in Optical Coherence Tomography (OCT) technology. In this study, we aim to automatically perform the 3D reconstruction of pore paths from OCT volumes, in order to study the remodeling of the lamina cribrosa during glaucoma and better understand this disease.The limited axial resolution of conventional OCT as well as the low signal to noise ratio (SNR) poses challenges for the robust characterization of axonal paths with enough reliability, knowing that it is difficult even for experts to identify the pores in a single en-face image. To this end, our first contribution introduces an innovative method to register and fuse 2 orthogonal 3D OCT volumes in order to enhance the pores. This is, to our knowledge, the first time that orthogonal OCT volumes are jointly exploited to achieve better image quality. Experimental results demonstrate that our algorithm is robust and leads to accurate alignment.Our second contribution presents a context-aware attention U-Net method, a deep learning approach using partial points annotation for the accurate pore segmentation in every 2D en-face image. This work is also, to the best of our knowledge, the first attempt to look into the LC pore reconstruction problem using deep learning methods. Through a comparative analysis with other state-of-the-art methods, we demonstrate the superior performance of the proposed approach.Our robust and accurate pore registration and segmentation methods provide a solid foundation for 3D reconstruction of axonal pathways, our third contribution. We propose a pore tracking method based on a locally applied parametric active contour algorithm. Our model integrates the characteristics of low intensity and regularity of pores. Combined with the 2D segmentation maps, it enables us to reconstruct the axonal paths in 3D plane by plane. These results pave the way for the calculation of biomarkers characterizing the LC and facilitate medical interpretation
Sekkal, Rafiq. "Techniques visuelles pour la détection et le suivi d'objets 2D". Phd thesis, INSA de Rennes, 2014. http://tel.archives-ouvertes.fr/tel-00981107.
Texto completo da fonteCapítulos de livros sobre o assunto "Segmentation des pores"
Jiqun, Zhang, Hu Chungjin, Liu Xin, He Dongmei e Li Hua. "An Algorithm for Rock Pore Image Segmentation". In Lecture Notes in Electrical Engineering, 243–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46578-3_28.
Texto completo da fonteJiang, Hao. "Finding Human Poses in Videos Using Concurrent Matching and Segmentation". In Computer Vision – ACCV 2010, 228–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19315-6_18.
Texto completo da fonteKrüger, Nina, Jan Brüning, Leonid Goubergrits, Matthias Ivantsits, Lars Walczak, Volkmar Falk, Henryk Dreger, Titus Kühne e Anja Hennemuth. "Deep Learning-Based Pulmonary Artery Surface Mesh Generation". In Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers, 140–51. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52448-6_14.
Texto completo da fonteLu, Siwei, Xiaofang Zhao, Huazhu Liu e Hongjie Liang. "Semiconductor Material Porosity Segmentation in Flame Retardant Materials SEM Images Using Data Augmentation and Transfer Learning". In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde240011.
Texto completo da fonteNandhitha, N. M., S. Emalda Roslin, Rekha Chakravarthi e M. S. Sangeetha. "Feasibility of Infrared Thermography for Health Monitoring of Archeological Structures". In Advances in Parallel Computing. IOS Press, 2021. http://dx.doi.org/10.3233/apc210021.
Texto completo da fonteHiremath, Shilpa, e A. Shobha Rani. "Image Filtering Using Anisotropic Diffusion for Brain Tumor Detection". In Applications of Parallel Data Processing for Biomedical Imaging, 244–60. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2426-4.ch012.
Texto completo da fontePrabha V., Punya, e Sriraam N. "A Primitive Survey on Ultrasonic Imaging-Oriented Segmentation Techniques for Detection of Fetal Cardiac Chambers". In Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention, 1455–66. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7544-7.ch074.
Texto completo da fonteZhang, Yan. "A New Method for Improving the Accuracy of Word Segmentation in Modern Chinese Texts". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia231409.
Texto completo da fonteWin, Htwe Pa Pa, Phyo Thu Thu Khine e Khin Nwe Ni Tun. "Character Segmentation Scheme for OCR System". In Intelligent Computer Vision and Image Processing, 262–71. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-3906-5.ch018.
Texto completo da fonteShillcock, Richard, Paul Cairns, Nick Chater e Joe Levy. "Statistical and Connectionist Modelling of the Development of Speech Segmentation". In Models of Language Acquisition, 103–20. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198299899.003.0006.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Segmentation des pores"
Joshi, R. M. "Self-Consistent Approximation for Porosity Segmentation". In Indonesian Petroleum Association - 46th Annual Convention & Exhibition 2022. Indonesian Petroleum Association, 2022. http://dx.doi.org/10.29118/ipa22-g-121.
Texto completo da fonteWong, Vivian Wen Hui, Max Ferguson, Kincho H. Law, Yung-Tsun Tina Lee e Paul Witherell. "Segmentation of Additive Manufacturing Defects Using U-Net". In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-68885.
Texto completo da fonteSugiarto, Bambang, Esa Prakasa, Ratih Damayanti, Gunawan, Riffa Haviani Laluma e A. Andini Radisya Pratiwi. "Pores Segmentation Based on Active Contour Model for Automatic Wood Species Identification". In 2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA). IEEE, 2023. http://dx.doi.org/10.1109/tssa59948.2023.10366953.
Texto completo da fontePanaitescu, C. T., K. Wu, Y. Tanino e A. Starkey. "AI Enabled Digital Rock Technology for Larger Scale Modelling of Complex Fractured Subsurface Rocks". In SPE Offshore Europe Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215499-ms.
Texto completo da fonteKALEEL, IBRAHIM, SOPHIE-MARIA RAUSCHER e ARUN RAINA. "RECONSTRUCTION OF A SIC-SIC CMC MICROSTRUCTURE USING DEEP LEARNING AND ADVANCED IMAGE PROCESSING TECHNIQUE". In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36681.
Texto completo da fonteSafonov, Ilia, Anton Kornilov e Iryna Reimers. "Rendering Semisynthetic FIB-SEM Images of Rock Samples". In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-855-863.
Texto completo da fonteCao, Jinxin, Yiqiang Li, Yaqian Zhang, Wenbin Gao, Yuling Zhang, Yifei Cai, Xuechen Tang, Qihang Li e Zheyu Liu. "Identification of Polymer Flooding Flow Channels and Characterization of Oil Recovery Factor Based On U-Net". In SPE Conference at Oman Petroleum & Energy Show. SPE, 2024. http://dx.doi.org/10.2118/218767-ms.
Texto completo da fonteHage, Ilige S., e Ramsey F. Hamade. "Distribution of Porosity in Cortical (Bovine) Bone". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51703.
Texto completo da fonteDing, Nan, Hélène Urien, Florence Rossant, Jérémie Sublime e Michel Paques. "Context-aware Attention U-Net for the segmentation of pores in Lamina Cribrosa using partial points annotation". In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00088.
Texto completo da fonteHage, Ilige S., Mu'tasem A. Shehadeh e Ramsey F. Hamade. "Application of Homogenization Theory to Study the Mechanics of Cortical Bone". In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36427.
Texto completo da fonte