Artigos de revistas sobre o tema "Satellites en Rotation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Satellites en Rotation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Agrusa, Harrison F., Yun Zhang, Derek C. Richardson, Petr Pravec, Matija Ćuk, Patrick Michel, Ronald-Louis Ballouz et al. "Direct N-body Simulations of Satellite Formation around Small Asteroids: Insights from DART’s Encounter with the Didymos System". Planetary Science Journal 5, n.º 2 (1 de fevereiro de 2024): 54. http://dx.doi.org/10.3847/psj/ad206b.
Texto completo da fonteRaghuprasad, Puthalath Koroth. "Synchronous, Nonsynchronous and Negative Rotations: How Spin and Gravity Orchestrate Planetary Motions". Applied Physics Research 12, n.º 2 (31 de janeiro de 2020): 1. http://dx.doi.org/10.5539/apr.v12n2p1.
Texto completo da fonteLieske, J. H. "IAU North Poles and Rotation Parameters for Natural Satellites". Symposium - International Astronomical Union 156 (1993): 351–56. http://dx.doi.org/10.1017/s0074180900173498.
Texto completo da fonteVan Hoolst, Tim. "The libration and interior structure of large icy satellites and Mercury". Proceedings of the International Astronomical Union 9, S310 (julho de 2014): 1–8. http://dx.doi.org/10.1017/s1743921314007698.
Texto completo da fontePashkevich, Vladimir V., e Andrey N. Vershkov. "Geodetic Precession of the Sun, Solar System Planets, and their Satellites". Artificial Satellites 57, n.º 1 (1 de março de 2022): 77–109. http://dx.doi.org/10.2478/arsa-2022-0005.
Texto completo da fontePashkevich, Vladimir V., e Andrey N. Vershkov. "Geodetic Precession of the Sun, Solar System Planets, and their Satellites". Artificial Satellites 57, n.º 1 (1 de março de 2022): 77–109. http://dx.doi.org/10.2478/arsa-2022-0005.
Texto completo da fonteVelgas, Lev Borisovich, e Liia Lvovna Iavolinskaia. "Seven main discoveries, rigorously proven". Interactive science, n.º 6 (40) (21 de junho de 2019): 103–5. http://dx.doi.org/10.21661/r-496981.
Texto completo da fonteZhang, Xiaozhen, Yao Kong, Xiaochun Lu e Decai Zou. "Contribution of Etalon Observation to Earth Rotation Parameters under a New Observation Scenario". Applied Sciences 12, n.º 10 (13 de maio de 2022): 4936. http://dx.doi.org/10.3390/app12104936.
Texto completo da fontePashkevich, V. V., e A. N. Vershkov. "Secular geodetic rotation of celestial bodies in the system of Jupiter’s moons". Publications of the Pulkovo Observatory 235 (dezembro de 2024): 51–68. https://doi.org/10.31725/0367-7966-2024-235-51-68.
Texto completo da fonteSchildknecht, T., I. Bauersima, U. Hugentobler, A. Verdun e G. Beutler. "CQSSP: A New Technique for Establishing the Tie Between the Stellar and Quasar Celestial Reference Frames". International Astronomical Union Colloquium 127 (1991): 341–47. http://dx.doi.org/10.1017/s0252921100064174.
Texto completo da fonteLi, Xingxing, Hongmin Zhang, Keke Zhang, Yongqiang Yuan, Wei Zhang e Yujie Qin. "Earth Rotation Parameters Estimation Using GPS and SLR Measurements to Multiple LEO Satellites". Remote Sensing 13, n.º 15 (3 de agosto de 2021): 3046. http://dx.doi.org/10.3390/rs13153046.
Texto completo da fontePashkevich, Vladimir V., e Andrey N. Vershkov. "Relativistic Effects in the Rotation of Jupiter’s Inner Satellites". Artificial Satellites 55, n.º 3 (1 de setembro de 2020): 118–29. http://dx.doi.org/10.2478/arsa-2020-0009.
Texto completo da fonteZhou, Wei, Hongliang Cai, Ziqiang Li, Chengpan Tang, Xiaogong Hu e Wanke Liu. "Research on the Rotational Correction of Distributed Autonomous Orbit Determination in the Satellite Navigation Constellation". Remote Sensing 14, n.º 14 (9 de julho de 2022): 3309. http://dx.doi.org/10.3390/rs14143309.
Texto completo da fonteVershkov, A. N., e V. V. Pashkevich. "Geodetic Rotation of Neptune’s Satellites". Solar System Research 56, n.º 5 (12 de setembro de 2022): 299–307. http://dx.doi.org/10.1134/s0038094622050070.
Texto completo da fonteHenrard, Jacques, e Gabriel Schwanen. "Rotation of Synchronous Satellites Application to the Galilean Satellites". Celestial Mechanics and Dynamical Astronomy 89, n.º 2 (2004): 181–200. http://dx.doi.org/10.1023/b:cele.0000034515.57763.33.
Texto completo da fonteAbbot, R. I., R. W. King, Y. Bock e C. C. Counselman. "Earth rotation from radio interferometric tracking of GPS satellites". Symposium - International Astronomical Union 128 (1988): 209–13. http://dx.doi.org/10.1017/s0074180900119503.
Texto completo da fonteHerbert-Fort, Stéphane, Dennis Zaritsky, Yeun Jin Kim, Jeremy Bailin e James E. Taylor. "Rotation of Galaxy Dark Matter Halos". Proceedings of the International Astronomical Union 2, S235 (agosto de 2006): 104. http://dx.doi.org/10.1017/s1743921306005394.
Texto completo da fonteStrigari, Louis E. "Kinematics of Milky Way Satellites: Mass Estimates, Rotation Limits, and Proper Motions". Advances in Astronomy 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/407394.
Texto completo da fonteAraújo, Alexandre, e Adriana Valio. "Dependence of Stellar Differential Rotation on Effective Temperature and Rotation: An Analysis from Starspot Transit Mapping". Astrophysical Journal 956, n.º 2 (1 de outubro de 2023): 141. http://dx.doi.org/10.3847/1538-4357/acfc1b.
Texto completo da fonteZhang, Derui, Hao Wang e Qing Zhao. "Non-Cooperative Target Ranging Based on High-Orbit Single-Star Temporal–Spatial Characteristics". Applied Sciences 14, n.º 23 (2 de dezembro de 2024): 11232. https://doi.org/10.3390/app142311232.
Texto completo da fonteCurir, Anna, Giuseppe Murante, Eva Poglio e Álvaro Villalobos. "The dual nature of the Milky Way stellar halo". Proceedings of the International Astronomical Union 6, S271 (junho de 2010): 145–52. http://dx.doi.org/10.1017/s1743921311017558.
Texto completo da fonteRufu, Raluca, e Robin M. Canup. "Coaccretion + Giant-impact Origin of the Uranus System: Tilting Impact". Astrophysical Journal 928, n.º 2 (31 de março de 2022): 123. http://dx.doi.org/10.3847/1538-4357/ac525a.
Texto completo da fonteJacobsen, K. "SYSTEMATIC GEOMETRIC IMAGE ERRORS OF VERY HIGH RESOLUTION OPTICAL SATELLITES". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1 (26 de setembro de 2018): 233–38. http://dx.doi.org/10.5194/isprs-archives-xlii-1-233-2018.
Texto completo da fonteCoyette, Alexis, Rose-Marie Baland e Tim Van Hoolst. "Revisiting the Cassini States of synchronous satellites with an angular momentum approach". Proceedings of the International Astronomical Union 18, S382 (dezembro de 2022): 73–79. http://dx.doi.org/10.1017/s1743921323004118.
Texto completo da fonteLiao, Shilong, Zhaoxiang Qi e Zhenghong Tang. "A Differential Measurement Method for Solving the Ephemeris Observability Issues in Autonomous Navigation". Journal of Navigation 68, n.º 6 (25 de maio de 2015): 1133–40. http://dx.doi.org/10.1017/s0373463315000417.
Texto completo da fonteMelnikov, Alexander V., e Ivan I. Shevchenko. "How do the small planetary satellites rotate?" Proceedings of the International Astronomical Union 5, S263 (agosto de 2009): 167–70. http://dx.doi.org/10.1017/s1743921310001705.
Texto completo da fonteMel’nikov, A. V., e I. I. Shevchenko. "Unusual rotation modes of minor planetary satellites". Solar System Research 41, n.º 6 (dezembro de 2007): 483–91. http://dx.doi.org/10.1134/s0038094607060032.
Texto completo da fonteMakarov, Valeri V. "EQUILIBRIUM ROTATION OF SEMILIQUID EXOPLANETS AND SATELLITES". Astrophysical Journal 810, n.º 1 (25 de agosto de 2015): 12. http://dx.doi.org/10.1088/0004-637x/810/1/12.
Texto completo da fonteKrzysztof, Sośnica. "Impact of the Atmospheric Drag on Starlette, Stella, Ajisai, and Lares Orbits". Artificial Satellites 50, n.º 1 (1 de março de 2015): 1–18. http://dx.doi.org/10.1515/arsa-2015-0001.
Texto completo da fonteQi, Lihua, Dongqiu Xing, Rui Wang e Jingna Cui. "Research on the operational regional coverage of satellite and spacecraft tracking and controlling". MATEC Web of Conferences 309 (2020): 01005. http://dx.doi.org/10.1051/matecconf/202030901005.
Texto completo da fonteVolkov, G. Yu, e D. V. Fadyushin. "DYNAMIC CONDITIONS FOR INCREASING THE STRUCTURAL STABILITY OF THE WORKING MECHANISM OF A PLANETARY-ROTARY HYDRAULIC MACHINE". Spravochnik. Inzhenernyi zhurnal, n.º 283 (outubro de 2020): 33–39. http://dx.doi.org/10.14489/hb.2020.10.pp.033-039.
Texto completo da fonteVolkov, G. Yu, e D. V. Fadyushin. "DYNAMIC CONDITIONS FOR INCREASING THE STRUCTURAL STABILITY OF THE WORKING MECHANISM OF A PLANETARY-ROTARY HYDRAULIC MACHINE". Spravochnik. Inzhenernyi zhurnal, n.º 283 (outubro de 2020): 33–39. http://dx.doi.org/10.14489/hb.2020.10.pp.033-039.
Texto completo da fonteProudfoot, Benjamin C. N., Darin A. Ragozzine, William Giforos, Will M. Grundy, Mariah MacDonald e William J. Oldroyd. "Beyond Point Masses. III. Detecting Haumea’s Nonspherical Gravitational Field". Planetary Science Journal 5, n.º 3 (1 de março de 2024): 69. http://dx.doi.org/10.3847/psj/ad26e9.
Texto completo da fonteGozdźiewski, Krzysztof. "Rotational Dynamics of Janus and Epimetheus". International Astronomical Union Colloquium 165 (1997): 269–74. http://dx.doi.org/10.1017/s0252921100046662.
Texto completo da fonteArifjanov, Aybek, Shamshodbek Akmalov, Shakhzod Shodiev e Abdukarim Haitov. "Discussion of different Remote sensing satellite possibilities for scientifical Earth observations". E3S Web of Conferences 264 (2021): 04007. http://dx.doi.org/10.1051/e3sconf/202126404007.
Texto completo da fonteKozioł, Karol, Andrzej Brosławski, Ashwin Patel, Henri Weisen e Jacek Rzadkiewicz. "Ion temperature spectroscopic measurements in high rotation discharges by means of X-ray diagnostic at JET". Journal of Instrumentation 17, n.º 07 (1 de julho de 2022): C07008. http://dx.doi.org/10.1088/1748-0221/17/07/c07008.
Texto completo da fonteZhang, Jie, Pengfei Wu, Qinghu Han, Xin Wei e Yi Duan. "Dynamic Behavior of Satellite and Its Solar Arrays Subject to Large-Scale Antenna Deployment Shock". Aerospace 11, n.º 5 (28 de abril de 2024): 349. http://dx.doi.org/10.3390/aerospace11050349.
Texto completo da fonteYu, Feng, Yi Zhao e Yanhua Zhang. "Pose Determination for Malfunctioned Satellites Based on Depth Information". International Journal of Aerospace Engineering 2019 (11 de junho de 2019): 1–15. http://dx.doi.org/10.1155/2019/6895628.
Texto completo da fonteNoyelles, Benoît. "Theory of the rotation of the Galilean satellites". Proceedings of the International Astronomical Union 6, S269 (janeiro de 2010): 240–44. http://dx.doi.org/10.1017/s1743921310007489.
Texto completo da fontePhilippe, Robutel, C. M. Correia Alexandre e Leleu Adrien. "Spin-orbit resonances and rotation of coorbital bodies in quasi-circular orbits". Proceedings of the International Astronomical Union 9, S310 (julho de 2014): 9–12. http://dx.doi.org/10.1017/s1743921314007704.
Texto completo da fonteKumar, K. D., e T. Yasaka. "Rotation Formation Flying of Three Satellites Using Tethers". Journal of Spacecraft and Rockets 41, n.º 6 (novembro de 2004): 973–85. http://dx.doi.org/10.2514/1.14251.
Texto completo da fonteMelnikov, A. V., e I. I. Shevchenko. "The rotation states predominant among the planetary satellites". Icarus 209, n.º 2 (outubro de 2010): 786–94. http://dx.doi.org/10.1016/j.icarus.2010.04.022.
Texto completo da fonteSerebryanskiy, A. V. "SPECTRAL OBSERVATIONS OF GEOSTATIONARY SATELLITES". Eurasian Physical Technical Journal 19, n.º 2 (40) (15 de junho de 2022): 93–100. http://dx.doi.org/10.31489/2022no2/93-100.
Texto completo da fonteBloßfeld, Mathis, Julian Zeitlhöfler, Sergei Rudenko e Denise Dettmering. "Observation-Based Attitude Realization for Accurate Jason Satellite Orbits and Its Impact on Geodetic and Altimetry Results". Remote Sensing 12, n.º 4 (19 de fevereiro de 2020): 682. http://dx.doi.org/10.3390/rs12040682.
Texto completo da fonteStrugarek, Dariusz, Krzysztof Sośnica, Daniel Arnold, Adrian Jäggi, Radosław Zajdel, Grzegorz Bury e Mateusz Drożdżewski. "Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites". Remote Sensing 11, n.º 19 (30 de setembro de 2019): 2282. http://dx.doi.org/10.3390/rs11192282.
Texto completo da fontePashkevich, V. V., e A. N. Vershkov. "New High-Precision Values of the Geodetic Rotation of the Mars Satellites System, Major Planets, Pluto, the Moon and the Sun". Artificial Satellites 54, n.º 2 (1 de junho de 2019): 31–42. http://dx.doi.org/10.2478/arsa-2019-0004.
Texto completo da fonteMoraes, R. A., G. Borderes-Motta, O. C. Winter e J. Monteiro. "On the stability of additional moons orbiting Kepler-1625 b". Monthly Notices of the Royal Astronomical Society 510, n.º 2 (5 de janeiro de 2022): 2583–96. http://dx.doi.org/10.1093/mnras/stab3576.
Texto completo da fonteMalkin, Zinovy. "SLR Contribution to Investigation of Polar Motion". International Astronomical Union Colloquium 178 (2000): 267–76. http://dx.doi.org/10.1017/s0252921100061406.
Texto completo da fonteChen, Jing, Xiaojun Jin, Cong Hou, Likai Zhu, Zhaobin Xu e Zhonghe Jin. "Real-Time Orbit Determination of Micro–Nano Satellite Using Robust Adaptive Filtering". Sensors 24, n.º 24 (14 de dezembro de 2024): 7988. https://doi.org/10.3390/s24247988.
Texto completo da fonteKolaczek, B. "Rotation of the Solar System Bodies". Highlights of Astronomy 9 (1992): 508–36. http://dx.doi.org/10.1017/s1539299600009667.
Texto completo da fonte