Literatura científica selecionada sobre o tema "Satellite tracking"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Satellite tracking".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Satellite tracking"
Salat, Junaidi, Cut Lilis Setiawati e Zikrul Khalid. "Ku-Band Low Noise Block Converter (LNB) Sync Application Design Using Android Based Solid Dish". Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences 4, n.º 1 (10 de fevereiro de 2021): 1135–50. http://dx.doi.org/10.33258/birci.v4i1.1725.
Texto completo da fonteCui, Jun Xia, Hu Li Shi, Chang Lv e Rui Zhu He. "SIGSO Satellite Tracking Characteristics of Large-Diameter Parabolic Antenna". Applied Mechanics and Materials 365-366 (agosto de 2013): 1328–31. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.1328.
Texto completo da fontePrasad, S. N., S. Pal e S. G. Basu. "Satellite Tracking Systems". IETE Journal of Education 36, n.º 2-3 (abril de 1995): 67–84. http://dx.doi.org/10.1080/09747338.1995.11415618.
Texto completo da fonteCarson-Jackson, J. "Satellite AIS – Developing Technology or Existing Capability?" Journal of Navigation 65, n.º 2 (12 de março de 2012): 303–21. http://dx.doi.org/10.1017/s037346331100066x.
Texto completo da fonteChauhan, Mayur, Teesha Sonawane, Yash Mehta e Mahalaxmi Palinje. "Review on Automatic Antenna Tracking System For LEO Satellites". International Journal for Research in Applied Science and Engineering Technology 11, n.º 1 (31 de janeiro de 2023): 188–93. http://dx.doi.org/10.22214/ijraset.2023.48515.
Texto completo da fonteZhang, Zhaoxiang, Chenghang Wang, Jianing Song e Yuelei Xu. "Object Tracking Based on Satellite Videos: A Literature Review". Remote Sensing 14, n.º 15 (31 de julho de 2022): 3674. http://dx.doi.org/10.3390/rs14153674.
Texto completo da fonteFrench, John. "Tracking animals by satellite". Electronics and Power 32, n.º 5 (1986): 373. http://dx.doi.org/10.1049/ep.1986.0219.
Texto completo da fonteBarnes, W. G. "Tracking animals by satellite". Electronics and Power 32, n.º 7 (1986): 508. http://dx.doi.org/10.1049/ep.1986.0293.
Texto completo da fonteHe, Wang, Liu, Song, Zhou, Wang, Gao et al. "Shipborne Acquisition, Tracking, and Pointing Experimental Verifications Towards Satellite-to-Sea Laser Communication". Applied Sciences 9, n.º 18 (19 de setembro de 2019): 3940. http://dx.doi.org/10.3390/app9183940.
Texto completo da fonteLI, Yuheng, Jun ZHENG e Kechu YI. "On a Tracking and Data Relay Satellite (TDRS) Tracking a Lunar satellite". Chinese Journal of Space Science 27, n.º 3 (2007): 227. http://dx.doi.org/10.11728/cjss2007.03.227.
Texto completo da fonteTeses / dissertações sobre o assunto "Satellite tracking"
Brengesjö, Carl, e Martine Selin. "Tracking System : Suaineadh satellite experiment". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-52906.
Texto completo da fonteEdwards, David J. "Tracking systems for satellite communications". Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379579.
Texto completo da fonteAnderson, Mike, Peter Militch e Hugh Pickens. "AN AUTONOMOUS SATELLITE TRACKING STATION". International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/607307.
Texto completo da fonteIn 1998, AlliedSignal Technical Services (ATSC) installed three fully autonomous 13-meter satellite tracking systems for the Integrated Program Office of the National Oceanic and Atmospheric Administration (NOAA) at the Command and Data Acquisition Station near Fairbanks, Alaska. These systems track and command NOAA Polar Orbiting Weather Satellites and Defense Meteorological Satellites. Each tracking system operates for extended periods of time with little intervention other than periodic scheduling contacts. Schedule execution initiates equipment configuration, including establishing the RF communications link to the satellite. Station autonomy is achieved through use of a robust scheduler that permits remote users and the System Administrator to request pass activities for any of the supported missions. Spacecraft in the mission set are scheduled for normal operations according to the priority they have been assigned. Once the scheduler resolves conflicts, it builds a human-readable control script that executes all required support activities. Pass adds or deletes generate new schedule scripts and can be performed in seconds. The systems can be configured to support CCSDS and TDM telemetry processing, but the units installed at Fairbanks required only telemetry and command through-put capabilities. Received telemetry data is buffered on disk-storage for immediate, post-pass playback, and also on tape for long-term archiving purposes. The system can autonomously support up to 20 spacecraft with 5 different configuration setups each. L-Band, S-Band and X-Band frequencies are supported.
Sharifi, Mohammad A. "Satellite to satellite tracking in the space-wise approach". [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-28337.
Texto completo da fonteHan, Shin-Chan. "Efficient global gravity field determination from satellite-to-satellite tracking". Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1061995200.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xvii, 198 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Christopher Jekeli, Dept. of Geodetic Science and Surveying. Includes bibliographical references (p. 192-198).
Kenington, P. B. "Tracking receiver design for the electronic 'beam squint' tracking system". Thesis, University of Bristol, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235772.
Texto completo da fonteHansen, Jeremy Roger. "Wide field of view satellite tracking". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0031/MQ65844.pdf.
Texto completo da fonteGlim, Carl. "MULTI-USER SATELLITE TRACKING NETWORK SCHEDULING". International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609211.
Texto completo da fonteThe recent proliferation of Low Earth Orbiting (LEO) science, earth resources, and global communication satellites requires a significant number of ground stations for support. A network of satellite tracking ground stations with the ability to support multiple users and communicate with multiple satellites requires a robust scheduling and conflict resolution system. This paper describes an automated scheduling implementation for managing such a commercial, multi-user, multiple satellite, ground station network.
Hansen, Jeremy Roger. "Wide field of view satellite tracking". Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.nlc-bnc.ca/obj/s4/f2/dsk1/tape3/PQDD%5F0031/MQ65844.pdf.
Texto completo da fonteKim, Jeongrae. "Simulation study of a low-low satellite-to-satellite tracking mission /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteLivros sobre o assunto "Satellite tracking"
Long, Mark. The inclined orbit satellite tracking guidebook. Ft. Lauderdale, Fla: Mark Long Enterprises, 1993.
Encontre o texto completo da fonteKawase, Seiichirō. Radio interferometry and satellite tracking. Norwood, MA: Artech House, 2012.
Encontre o texto completo da fonteNaeimi, Majid, e Jakob Flury, eds. Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49941-3.
Texto completo da fonteBurns, R. E. Solution of the angles-only satellite tracking problem. [Huntsville, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteBurns, R. E. Solution of the angles-only satellite tracking problem. [Huntsville, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteBurns, R. E. Solution of the angles-only satellite tracking problem. [Huntsville, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteBurns, R. E. Solution of the angles-only satellite tracking problem. Washington, D.C: National Aeronautics and Space Administration, 1997.
Encontre o texto completo da fonteBurns, R. E. Solution of the angles-only satellite tracking problem. [Huntsville, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteBurns, Rowland E. Solution of the angles-only satellite tracking problem. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteMader, Gerald L., ed. Permanent Satellite Tracking Networks for Geodesy and Geodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77726-4.
Texto completo da fonteCapítulos de livros sobre o assunto "Satellite tracking"
Ratledge, David. "Satellite Tracking". In Software and Data for Practical Astronomers, 129–41. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0555-8_10.
Texto completo da fonteMontenbruck, Oliver, e Eberhard Gill. "Satellite Tracking and ObservationModels". In Satellite Orbits, 193–232. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58351-3_6.
Texto completo da fonteIlk, Karl Heinz. "Satellite-to-Satellite-Tracking (SST)". In Satellitengeodäsie, 215–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62369-5_12.
Texto completo da fonteMartin, C. F., T. V. Martin e David E. Smith. "Satellite-Satellite Tracking for Estimating Geopotential Coefficients". In The Use of Artificial Satellites for Geodesy, 139–44. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm015p0139.
Texto completo da fonteGuest, Arthur Norman. "Telemetry, Tracking, and Command (TT&C)". In Handbook of Satellite Applications, 1067–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-7671-0_69.
Texto completo da fonteGuest, Arthur Norman. "Telemetry, Tracking, and Command (TT&C)". In Handbook of Satellite Applications, 1313–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-23386-4_69.
Texto completo da fonteGuest, Arthur Norman. "Telemetry, Tracking, and Command (TT&C)". In Handbook of Satellite Applications, 1–12. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6423-5_69-3.
Texto completo da fonteKeller, Wolfgang. "Satellite-to-Satellite Tracking (Low-Low/High-Low SST)". In Handbook of Geomathematics, 171–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54551-1_56.
Texto completo da fonteKeller, Wolfgang. "Satellite-to-Satellite Tracking (Low–Low/High–Low SST)". In Handbook of Geomathematics, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27793-1_56-2.
Texto completo da fonteJia, Min, Zheng Gao, Zhisong Hao e Qing Guo. "UAV Tracking with Proposals Based on Optical Flow". In Wireless and Satellite Systems, 497–505. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19156-6_46.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Satellite tracking"
Yun, Sang-Hyuk, Hyo-Sung Ahn, Sun-Ju Park, Ok-Chul Jung e Dae-Won Chung. "Ground Antenna Scheduling Algorithm for Multi-Satellite Tracking". In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48042.
Texto completo da fonteSors Raurell, Daniel, Laura González Llamazares, Sergio Tabasco Vargas e Lucille Baudet. "SGAC global satellite tracking initiative". In Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.139.
Texto completo da fonteMehmood, Asif. "Understanding deep learning decision for satellite image classification". In Pattern Recognition and Tracking XXXII, editado por Mohammad S. Alam. SPIE, 2021. http://dx.doi.org/10.1117/12.2591974.
Texto completo da fonteChin, Jonathan, e Asif Mehmood. "Generative adversarial networks based super resolution of satellite aircraft imagery". In Pattern Recognition and Tracking XXX, editado por Mohammad S. Alam. SPIE, 2019. http://dx.doi.org/10.1117/12.2524720.
Texto completo da fonteMehmood, Asif. "Late fusion of pre-trained networks for satellite image classification". In Pattern Recognition and Tracking XXXIII, editado por Mohammad S. Alam e Vijayan K. Asari. SPIE, 2022. http://dx.doi.org/10.1117/12.2615030.
Texto completo da fonteWafi, Moh Kamalul. "Filtering module on satellite tracking". In ADVANCED INDUSTRIAL TECHNOLOGY IN ENGINEERING PHYSICS. Author(s), 2019. http://dx.doi.org/10.1063/1.5095297.
Texto completo da fonteSun, Yunda, Peizhuo Li e Xue Wan. "Segmentation-based orbiting satellite tracking". In ICMIP 2020: 2020 5th International Conference on Multimedia and Image Processing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3381271.3381291.
Texto completo da fonteGracia, I., Maria Petrou e A. J. Fraser. "Line tracking from satellite images". In Remote Sensing, editado por Sebastiano B. Serpico. SPIE, 1998. http://dx.doi.org/10.1117/12.331869.
Texto completo da fonteChen, Qin, Zixian Ma, Bing Lan, Chunyi Song e Zhiwei Xu. "Multi-Satellite Tracking For The LEO Satellite Communication Network". In ICC 2022 - IEEE International Conference on Communications. IEEE, 2022. http://dx.doi.org/10.1109/icc45855.2022.9838807.
Texto completo da fontePhillips, Ronald L., e James E. Harvey. "Reciprocal path tracking in satellite laser communications applications". In Satellite Remote Sensing III, editado por Adam D. Devir, Anton Kohnle e Christian Werner. SPIE, 1997. http://dx.doi.org/10.1117/12.263166.
Texto completo da fonteRelatórios de organizações sobre o assunto "Satellite tracking"
Rae Kokeš, Rae Kokeš. Tracking Male Lions in Matusadona National Park, Zimbabwe using Satellite GPS Collars. Experiment, janeiro de 2015. http://dx.doi.org/10.18258/4516.
Texto completo da fonteBloomfield, R. A., e G. R. Dobson. Image-Data Transmission Demonstration over the Tracking and Data Relay Satellite System. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1998. http://dx.doi.org/10.21236/ada352534.
Texto completo da fonteAragon, Leonard, Joseph Kriz e Rickie D. Moon. Environmental Assessment for Hawaii Tracking Station A-Side Antenna Remote Block Change Upgrade at Kaena Point Satellite Tracking Station, Hawaii. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2011. http://dx.doi.org/10.21236/ada544589.
Texto completo da fonteShannon Murphy, Shannon Murphy. Satellite Tracking Reef Manta Rays in Papua New Guinea to Inform Conservation Management. Experiment, janeiro de 2018. http://dx.doi.org/10.18258/10586.
Texto completo da fonteNorman, Steven P., William W. Hargrove, Joseph P. Spruce, William M. Christie e Sean W. Schroeder. Highlights of satellite-based forest change recognition and tracking using the ForWarn System. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2013. http://dx.doi.org/10.2737/srs-gtr-180.
Texto completo da fonteBasta, Timothy, Scott Miller, Jamesen Motley, Nichole Murray, Randal Larimer e Berk Knighton. Repurposing an Iridium Network Satellite Modem into a Two-Way Balloon Tracking and Communications System. Ames (Iowa): Iowa State University. Library. Digital Press, janeiro de 2014. http://dx.doi.org/10.31274/ahac.8158.
Texto completo da fonteNorman, Steven P., William W. Hargrove, Joseph P. Spruce, William M. Christie e Sean W. Schroeder. Highlights of satellite-based forest change recognition and tracking using the ForWarn System. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2013. http://dx.doi.org/10.2737/srs-gtr-180.
Texto completo da fontePakula, W. A., J. A. Klobuchar, D. N. Anderson e P. H. Doherty. Ionospheric Errors at L-Band for Satellite and Re-Entry Object Tracking in the New Equatorial Anomaly Region. Fort Belvoir, VA: Defense Technical Information Center, maio de 1990. http://dx.doi.org/10.21236/adp006303.
Texto completo da fonteWooden, William H., John A. Bangert e J. M. Robinson. Investigation of Polar Motion from Doppler Tracking of the NNSS (Navy Navigation Satellite System) during the MERIT Campaign. Fort Belvoir, VA: Defense Technical Information Center, abril de 1986. http://dx.doi.org/10.21236/ada167565.
Texto completo da fonteDeike, William D., e Timothy M. Gallagher. Airborne Protected Military Satellite Communications: Analysis of Open-Loop Pointing and Closed-Loop Tracking with Noisy Platform Attitude Information. Fort Belvoir, VA: Defense Technical Information Center, abril de 2011. http://dx.doi.org/10.21236/ada569701.
Texto completo da fonte