Artigos de revistas sobre o tema "Salts in"

Siga este link para ver outros tipos de publicações sobre o tema: Salts in.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Salts in".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Zhang, Cheng-Pan, Ze-Yu Tian e Yu Ma. "Alkylation Reactions with Alkylsulfonium Salts". Synthesis 54, n.º 06 (25 de outubro de 2021): 1478–502. http://dx.doi.org/10.1055/a-1677-5971.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
AbstractThe application of alkylsulfonium salts as alkyl-transfer reagents in organic synthesis has reemerged over the past few years. Numerous heteroatom- and carbon-centered nucleophiles, alkenes, arenes, alkynes, organometallic reagents, and others are readily alkylated by alkylsulfonium salts under mild conditions. The reactions feature convenience, high efficiency, readily accessible and structurally diversified alkylation reagents, good functional group tolerance, and a wide range of substrate types, allowing the facile synthesis of various useful organic molecules from commercially available building blocks. This review summarizes alkylation reactions using either isolated or in situ formed alkylsulfonium salts via nucleophilic substitution, transition-metal-catalyzed reactions, and photoredox processes.1 Introduction2 General Methods for the Synthesis of Alkylsulfonium Salts3 Electrophilic Alkylation Using Alkylsulfonium Salts4 Transition-Metal-Catalyzed Alkylation Using Alkylsulfonium Salts5 Photoredox-Catalyzed Alkylation Using Alkylsulfonium Salts6 Conclusion
2

Hassan, Khalida Abdul-Karim, Farhad Ali Hashim e Sarwar Mohammed Rasheed. "Influence of Magnetic Treated Saline Water on Salts Leaching from Salt Affected Soil". Journal of Zankoy Sulaimani - Part A 18, n.º 1 (30 de agosto de 2015): 159–66. http://dx.doi.org/10.17656/jzs.10460.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hermann Dekpaho Gnahe, Jean Didier Kouassi-Koffi, Hermann Antonin Kouassi e Emma Fernande Assemand. "Survey on the "plant salts" production and consumption in the west of Ivory Coast". GSC Advanced Research and Reviews 6, n.º 1 (30 de janeiro de 2021): 021–29. http://dx.doi.org/10.30574/gscarr.2021.6.1.0002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
A field survey was carried out to increase knowledge on salts produced from plants in the west of Ivory Coast. This work intends to serve as a basis for a real promotion of "plant salts" as a food additive in domestic and industrial production. It would also like to provide an alternative to severe low-sodium diets. It is produced in the west of Ivory Coast, salty products made from plants and used as a substitute of sodium chloride. These "edible plant salts" are differentiated from each other by the type of plant (and even organ) used and the manufacturing process. Two manufacturing processes, resulting in physically different salts, were identified. The first, used by the non-native Malinke, gives the lumpy "potash" commonly sold at the markets. The second, practiced by the native Dan, Guere an Wobe peoples, gives a better developed fine "plant salts". The main “edible plant salts” found in this area are produced from palm or coconut branches. The salts from reeds and many forest trees such as kapok trees are also very appreciated, only they are rare. "Plant salts" are in greater demand for health reasons, hence their qualification as "salts of the sick people". They are consumed as a cooking ingredient or in pharmacopoeia and the elderly are their first consumers. Due to weak demand, productions are very irregular and in low quantities. These products are unknown to populations and industrialists although they could be useful in food and health sectors.
4

Kaduk, James A. "Terephthalate salts: salts of monopositive cations". Acta Crystallographica Section B Structural Science 56, n.º 3 (1 de junho de 2000): 474–85. http://dx.doi.org/10.1107/s0108768199014718.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The crystal structures of dilithium, disodium and diammonium terephthalate (1,4-benzenedicarboxylate) have been solved ab initio using Monte Carlo simulated annealing techniques, and refined using synchrotron powder data. The structures of dipotassium terephthalate, potassium hydrogen terephthalate and ammonium hydrogen terephthalate have been refined using single-crystal techniques. Li2C8H4O4 crystallizes in P2 1/c, with a = 8.35921 (5), b = 5.13208 (2), c = 8.48490 (5) Å, β = 93.1552 (4)°, V = 363.451 (3) Å3, Z = 2. The Li anions are tetrahedrally coordinated and the packing of the terephthalate anions resembles the γ-packing of aromatic hydrocarbons. Na2C8H4O4 crystallizes in Pbc2 1, with a = 3.54804 (5), b = 10.81604 (16), c = 18.99430 (20) Å, V = 728.92 (2) Å3, Z = 4. The coordination of the two independent Na is trigonal prismatic and the terephthalate packing resembles the β packing of hydrocarbons. (NH4)2C8H4O4 also crystallizes in Pbc21, with a = 4.0053 (5), b = 11.8136 (21), c = 20.1857 (24) Å, V = 955.1 (2) Å3, Z = 4. The cations and planar anions are linked by hydrogen bonds and the packing is a looser version of the β packing. K2C8H4O2 crystallizes in P21/c, with a = 10.561 (4), b = 3.9440 (12), c = 11.535 (5) Å, β = 113.08 (3)°, V = 442.0 (3) Å3, Z = 2. The K is trigonal prismatic and the packing is also β. Both KHC8H4O4 and (NH4)HC8H4O4 crystallize in C2/c, with a = 18.825 (4) and 18.924 (4), b = 3.770 (2) and 3.7967 (9), c = 11.179 (2) and 11.481 (2) Å, β = 98.04 (3) and 94.56 (5)°, V = 816.8 (3) and 790.9 (3) Å3, respectively, and Z = 4. The packing in the hydrogen-bonded acid salts is also β. Electrostatic interactions among the terephthalate anions appear to be important in determining the crystal packing.
5

Ngoc, Binh Vu. "Characteristics of Clay Soft Soil in the Mekong Delta of Vietnam and Improvement Result with Cement". Iraqi Geological Journal 55, n.º 1A (31 de janeiro de 2022): 64–73. http://dx.doi.org/10.46717/igj.55.1a.5ms-2022-01-24.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The results of research on the characteristics of soft clay soils distributed in some provinces of the Mekong Delta show that most of the soils are contaminated with easily soluble salts, containing organic matter, pH < 7. Sandy clay, clay in An Giang, and clay mud in Tien Giang are less acidic, not salty, and contamination of salts in the form of sulfate- chloride. Clay mud in Hau Giang is less acidic, less salt, and contamination of salts in the form of chloride-sulfate. Clay mud in Bac Lieu and Ca Mau are lots of salty soil, contaminated with chloride of salts. Peat soil in Kien Giang is strongly acidic, not salty, contaminated with sulfate -chloride. All of them have a large compression coefficient, small load capacity, therefore they should be reinforced when construction works. Unconfined compressive strength of reinforced soils with cement showed that sandy clay in An Giang is the best, and then is soft clay in An Giang and clay mud in Tien Giang, Hau Giang, Bạc Lieu, and Ca Mau. Peat soil in Kien Giang has a low strength at different contents and days of age (with a concents 400 kg/m3 at 91 days has unconfined compressive strength qu = 201 kPa), only 12.8 to 23.0% compared to the soil elsewhere. The curing time process samples show that the compressive strength of the peat soil mixed cement is increased initially, then they were decreased over a period of 28 days.
6

Schumacher, Ricardo F., Benhur Godoi, Carla K. Jurinic e Andrei L. Belladona. "Diorganyl Dichalcogenides and Copper/Iron Salts: Versatile Cyclization System To Achieve Carbo- and Heterocycles from Alkynes". Synthesis 53, n.º 15 (24 de março de 2021): 2545–58. http://dx.doi.org/10.1055/a-1463-4098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
AbstractOrganochalcogen-containing cyclic molecules have shown several promising pharmacological properties. Consequently, different strategies have been developed for their synthesis in the past few years. Particularly due to the low cost and environmental aspects, copper- and iron-promoted cyclization reactions of alkynyl substrates have been broadly and efficiently applied for this purpose. This short review presents an overview of the most recent advances in the synthesis of organochalcogen-containing carbo- and heterocycles by reacting diorganyl disulfides, diselenides, and ditellurides with alkyne derivatives in the presence of copper and iron salts to promote cyclization reactions.1 Introduction2 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Copper Salts3 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Iron Salts4 Conclusions
7

Lui, Matthew Y., Lorna Crowhurst, Jason P. Hallett, Patricia A. Hunt, Heiko Niedermeyer e Tom Welton. "Salts dissolved in salts: ionic liquid mixtures". Chemical Science 2, n.º 8 (2011): 1491. http://dx.doi.org/10.1039/c1sc00227a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Salchner, Robert, Volker Kahlenberg, Thomas Gelbrich, Klaus Wurst, Martin Rauch, Gerhard Laus e Herwig Schottenberger. "Hexaethylguanidinium Salts". Crystals 4, n.º 3 (5 de setembro de 2014): 404–16. http://dx.doi.org/10.3390/cryst4030404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

McCrory, P. "Smelling salts". British Journal of Sports Medicine 40, n.º 8 (12 de abril de 2006): 659–60. http://dx.doi.org/10.1136/bjsm.2006.029710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Antoniou, T., e D. N. Juurlink. ""Bath salts"". Canadian Medical Association Journal 184, n.º 15 (20 de agosto de 2012): 1713. http://dx.doi.org/10.1503/cmaj.121017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Oliveira, Roberta. "Organotrifluoroborate Salts". Synlett 2009, n.º 03 (21 de janeiro de 2009): 505–6. http://dx.doi.org/10.1055/s-0028-1083584.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Nikitin, Igor V., e V. Ya Rosolovskii. "Tetrafluoroammonium Salts". Russian Chemical Reviews 54, n.º 5 (31 de maio de 1985): 426–36. http://dx.doi.org/10.1070/rc1985v054n05abeh003068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Pirkuliev, Namig Sh, Valery K. Brel e Nikolai S. Zefirov. "Alkenyliodonium salts". Russian Chemical Reviews 69, n.º 2 (28 de fevereiro de 2000): 105–20. http://dx.doi.org/10.1070/rc2000v069n02abeh000557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Mongiardo, Nicola, Bruno De Rienzo e Franco Squadrini. "PENTAMIDINE SALTS". Lancet 334, n.º 8654 (julho de 1989): 108. http://dx.doi.org/10.1016/s0140-6736(89)90350-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Rapp, Bob. "Molten salts". Materials Today 8, n.º 12 (dezembro de 2005): 6. http://dx.doi.org/10.1016/s1369-7021(05)71195-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Sitzmann, Michael E., Richard Gilardi, Ray J. Butcher, William M. Koppes, Alfred G. Stern, Joseph S. Thrasher, Nirupam J. Trivedi e Zhen-Yu Yang. "Pentafluorosulfanylnitramide Salts". Inorganic Chemistry 39, n.º 4 (fevereiro de 2000): 843–50. http://dx.doi.org/10.1021/ic991281i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Gerona, Roy R., e Alan H. B. Wu. "Bath Salts". Clinics in Laboratory Medicine 32, n.º 3 (setembro de 2012): 415–27. http://dx.doi.org/10.1016/j.cll.2012.07.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Zheng, Honghe, Yanbao Fu, Hucheng Zhang, Takeshi Abe e Zempachi Ogumi. "Potassium Salts". Electrochemical and Solid-State Letters 9, n.º 3 (2006): A115. http://dx.doi.org/10.1149/1.2161447.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Keyworth, Charles Maurice. "Reserve Salts". Journal of the Society of Dyers and Colourists 44, n.º 6 (22 de outubro de 2008): 177–78. http://dx.doi.org/10.1111/j.1478-4408.1928.tb01500.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Nicklas, W. "Aluminum salts". Research in Immunology 143, n.º 5 (janeiro de 1992): 489–94. http://dx.doi.org/10.1016/0923-2494(92)80059-t.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Vigalok, I. V., V. I. Kovalenko e G. G. Petrova. "Aminofurazan salts". Chemistry of Heterocyclic Compounds 27, n.º 7 (julho de 1991): 803. http://dx.doi.org/10.1007/bf00476221.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Griffith, E. J., T. M. Ngo e M. Veiderma. "KURROL’S SALTS". Proceedings of the Estonian Academy of Sciences. Chemistry 42, n.º 3 (1993): 113. http://dx.doi.org/10.3176/chem.1993.3.01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Fini, Adamo, Giuseppe Fazio, Francesca Rosetti, M. Angeles Holgado, Ana Iruín e Josefa Alvarez-Fuentes. "Diclofenac Salts. III. Alkaline and Earth Alkaline Salts". Journal of Pharmaceutical Sciences 94, n.º 11 (novembro de 2005): 2416–31. http://dx.doi.org/10.1002/jps.20436.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kushner, Donn J. "What is the "true" internal environment of halophilic and other bacteria?" Canadian Journal of Microbiology 34, n.º 4 (1 de abril de 1988): 482–86. http://dx.doi.org/10.1139/m88-082.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
This article presents facts about, speculations on, and possible ways of determining the actual intracellular ionic environment of halophilic microorganisms and those that live in other extreme conditions. It suggests that halophilic archaebacteria have a truly salty internal environment (though one in which water and salts might well have limited freedom), whereas halophilic and salt-tolerant eubacteria may have salty external environments but much less salty internal ones.
25

Peñafiel García, Mario Javier, Cristhopher Alexander Romero Zambrano, Carlos Antonio Moreira Mendoza e Ernesto Alonso Rosero Delgado. "Efecto del pH y Sales Inorgánicas en la Degradación de Colorantes Industriales por Pleurotus Djamor". Revista Bases de la Ciencia. e-ISSN 2588-0764 6, n.º 2 (15 de outubro de 2021): 13. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2670.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
En la presente investigación se planteó el uso de la cepa Pd318 del hongo Pleurotus djamor como agente biorremediador, con el objetivo de evaluar su capacidad para degradar el colorante reactivo azul 19 (A19). Para ello se estudió la influencia que tienen cinco sales inorgánicas en el crecimiento y actividad lignolítica del hongo. Un cribado de sales inorgánicas en placa determinó que las sales CaCl2.2H2O y MnSO4.5H2O tienen mayor influencia en el desarrollo micelial y actividad lignolítica de la cepa. Ensayos de fermentación líquida (FEL) con diferentes combinaciones a distintas concentraciones de las sales de calcio y manganeso permitieron demostrar la capacidad de degradación del colorante azul 19 a los 7 días de fermentación líquida a temperatura ambiente y agitación constante. Los máximos porcentajes de degradación del colorante fueron obtenidos con las combinaciones A1B1 y A2B1 con 43,47% y 41,36%, respectivamente. Se observó que a un pH de 5 unidades se favorece la degradación del colorante. Los estudios en placa señalaron que la adición de sales de calcio y manganeso en 10 días de incubación favorecieron el desarrollo micelial y la actividad lignolítica de Pd318, mientras que en un sistema FEL de 7 días, únicamente la adición de manganeso influye favorablemente a la actividad lignolítica del hongo y en consecuencia a su capacidad de degradación de azul 19. Palabra clave: Colorante azul 19, degradación de colorantes, enzimas lignolíticas, Pleurotus djamor. Abstract In the present investigation, the use of the Pd318 strain of the Pleurotus djamor fungus as a bioremediation agent was proposed, with the aim of evaluating its ability to degrade reactive dye blue 19 (A19). For this, the influence of five inorganic salts on the growth and lignolytic activity of the fungus was studied. A plate screening of inorganic salts determined that the CaCl2.2H2O and MnSO4.5H2O salts have a greater influence on the mycelial development and lignolytic activity of the strain. Liquid fermentation tests (FEL) with different combinations at different concentrations of the calcium and manganese salts allowed to demonstrate the degradation capacity of the blue dye 19, after 7 days of liquid fermentation at room temperature and constant stirring, the maximum degradation percentages of the dye were obtained with the combinations A1B1 and A2B1 with 43.47% and 41.36% respectively. It was observed that at a pH of 5 units the degradation of the dye is favored. The plate studies indicated that the addition of calcium and manganese salts in 10 days of incubation, favored mycelial development and the lignolytic activity of Pd318, while in a 7 day FEL system, only the addition of manganese favorably influenced the lignolytic activity of the fungus and consequently its ability to break down blue 19. Keywords: Blue dye 19, dye degradation, lignolytic enzymes, Pleurotus djamor.
26

Benavente, David, Marli de Jongh e Juan Carlos Cañaveras. "Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones". Minerals 11, n.º 1 (25 de dezembro de 2020): 18. http://dx.doi.org/10.3390/min11010018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
This investigation studies the physical and chemical effect of salt weathering on biocalcarenites and biocalcrudites in the Basilica of Our Lady of Succour (Aspe, Spain). Weathering patterns are the result of salty rising capillary water and water lixiviated from pigeon droppings. Surface modifications and features induced by material loss are observable in the monument. Formation of gypsum, hexahydrite, halite, aphthitalite and arcanite is associated with rising capillary water, and niter, hydroxyapatite, brushite, struvite, weddellite, oxammite and halite with pigeon droppings. Humberstonite is related to the interaction of both types of waters. Analysis of crystal shapes reveals different saturation degree conditions. Single salts show non-equilibrium shapes, implying higher crystallisation pressures. Single salts have undergone dissolution and/or dehydration processes enhancing the deterioration process, particularly in the presence of magnesium sulphate. Double salts (humberstonite) have crystals corresponding to near-equilibrium form, implying lower crystallisation pressures. This geochemical study suggests salts precipitate via incongruent reactions rather than congruent precipitation, where hexahydrite is the precursor and limiting reactant of humberstonite. Chemical dissolution of limestone is driven mainly by the presence of acidic water lixiviated from pigeon droppings and is a critical weathering process affecting the most valuable architectural elements present in the façades.
27

LI, XIAOYU, CHUNSHENG MU, JIXIANG LIN, YING WANG e XIUJUN LI. "EFFECT OF ALKALINE POTASSIUM AND SODIUM SALTS ON GROWTH, PHOTOSYNTHESIS, IONS ABSORPTION AND SOLUTES SYNTHESIS OF WHEAT SEEDLINGS". Experimental Agriculture 50, n.º 1 (9 de setembro de 2013): 144–57. http://dx.doi.org/10.1017/s0014479713000458.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
SUMMARYPotassium (K) is an essential nutrient and abundant cation in plant cells. The application of K+ could alleviate abiotic stress. However, it was reported that the alleviation of K+ on salt-stressed plants only happened when K+ concentration was low. Most studies were focused on effects of sodium salts on plants in salty soils, and little information was reported about potassium salts, especially a higher level of potassium in alkaline salts. To explore the effects of K+ in alkaline salts on plant growth, and whether it had a same destructive impact as Na+, we mixed two alkaline sodium salts (ASS) (NaHCO3:Na2CO3 = 9:1) and two alkaline potassium salts (APS) (KHCO3:K2CO3 = 9:1) to treat 10-day-old wheat seedlings. Effects of ASS and APS on growth, photosynthesis, ions absorption and solutes accumulation were compared. Results indicated that effects of potassium salts in soil on plants growth were related to K+ concentration. Both growth and photosynthesis of wheat seedlings decreased, and the reduction was higher in APS treatment than in ASS treatment at 40 mM alkalinity. ASS treatment absorbed Na+, competing with K+ and free Ca2+, and inhibited the absorption of inorganic anions. APS treatments accumulated K+ and reduced the absorption of anions, with no competition with other cations. Both APS and ASS treatments promoted free Mg2+ accumulation and inhibited H2PO4−uptake. The reduction of H2PO4− promoted organic acid synthesis indirectly. Soluble sugar and proline accumulation were also related to the alkaline condition and extra K+ addition. In conclusion, excess potassium ions in soil, especially in alkaline soils, were harmful to plants. APS was another severe salt stress, intensity of which was higher than ASS. The growth and physiological response mechanisms of wheat seedlings to APS were similar to ASS. Both inorganic ions and organic solutes took part in the osmotic adjustment. Differences for APS depended on K+, but ASS on Na+.
28

Panovská, Z., A. Váchová e J. Řeřichová. "Sensitivity of Assessors to Ferrous Salts". Czech Journal of Food Sciences 27, Special Issue 1 (24 de junho de 2009): S333—S336. http://dx.doi.org/10.17221/1082-cjfs.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Taste is the chemical sensation whose function is not very well known. Recently it was shown that the range of taste is more extensive than the five basic taste sweet, salty, bitter, sour and umami. A metallic taste has been suggested as another basic taste, but its mode of perception is not well understood and has not been really accepted in the taste literature. Ferrous sulphate solutions were presented to the assessors so their sensitivity and best estimate thresholds (BET) were measured. The best estimated threshold range was 0.00049–0.00669 g/l for demineralised water, 0.00079–0.00669 g/l for distilled water and 0.00108–0.00669 g/l for tap water.
29

&NA;. "Amfetamine mixed salts". Reactions Weekly &NA;, n.º 1385 (janeiro de 2012): 7–8. http://dx.doi.org/10.2165/00128415-201213850-00017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Perera, Jean. "Wizard of salts". Ceylon Medical Journal 51, n.º 4 (29 de setembro de 2009): 159. http://dx.doi.org/10.4038/cmj.v51i4.1154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

&NA;. "Amfetamine mixed salts". Reactions Weekly &NA;, n.º 1358 (julho de 2011): 6–7. http://dx.doi.org/10.2165/00128415-201113580-00015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

&NA;. "Amfetamine mixed salts". Reactions Weekly &NA;, n.º 1369 (setembro de 2011): 8. http://dx.doi.org/10.2165/00128415-201113690-00019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

&NA;. "Amfetamine mixed salts". Reactions Weekly &NA;, n.º 1418 (setembro de 2012): 8. http://dx.doi.org/10.2165/00128415-201214180-00029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Levine, Philip. "Salts and Oils". Iowa Review 15, n.º 1 (janeiro de 1985): 36–37. http://dx.doi.org/10.17077/0021-065x.3162.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

&NA;. "Amfetamine mixed salts". Reactions Weekly &NA;, n.º 1328 (novembro de 2010): 7. http://dx.doi.org/10.2165/00128415-201013280-00018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Gaibi, M. "Formation of salts". British Dental Journal 200, n.º 2 (janeiro de 2006): 64–65. http://dx.doi.org/10.1038/sj.bdj.4813186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lordi, Nicholas, e Prafull Shiromani. "Compressibility of Salts". Drug Development and Industrial Pharmacy 11, n.º 1 (janeiro de 1985): 13–30. http://dx.doi.org/10.3109/03639048509057668.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Wieland, Diane M. "Psychoactive bath salts". Nursing Critical Care 10, n.º 3 (maio de 2015): 22–27. http://dx.doi.org/10.1097/01.ccn.0000464301.87505.b9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Schneider, Stefan, Tommy Hawkins, Michael Rosander, Jeffrey Mills, Adam Brand, Leslie Hudgens, Greg Warmoth e Ashwani Vij. "Liquid Azide Salts". Inorganic Chemistry 47, n.º 9 (maio de 2008): 3617–24. http://dx.doi.org/10.1021/ic702068r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Katritzky, Alan R., e Wolfgang H. Ramer. "Heterocyclic ynammonium salts". Journal of Organic Chemistry 50, n.º 6 (março de 1985): 852–56. http://dx.doi.org/10.1021/jo00206a026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Kolodyazhnaya, O. O., e O. I. Kolodyazhnyi. "Chiral phosphonium salts". Russian Journal of General Chemistry 82, n.º 12 (dezembro de 2012): 2005–6. http://dx.doi.org/10.1134/s1070363212120171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Ross, Edward A., Mary Watson e Bruce Goldberger. "“Bath Salts” Intoxication". New England Journal of Medicine 365, n.º 10 (8 de setembro de 2011): 967–68. http://dx.doi.org/10.1056/nejmc1107097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Aguirre-Ode, Fernando. "Hydrolysis of salts". Journal of Chemical Education 70, n.º 8 (agosto de 1993): 690. http://dx.doi.org/10.1021/ed070p690.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Cardinali, M. E., C. Giomini e G. Marrosu. "Hydrolysis of salts". Journal of Chemical Education 70, n.º 8 (agosto de 1993): 690. http://dx.doi.org/10.1021/ed070p690.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Malinowski, Edmund R. "Hydrolysis of salts". Journal of Chemical Education 70, n.º 8 (agosto de 1993): 691. http://dx.doi.org/10.1021/ed070p691.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kumar, Anil. "Aqueous guanidinium salts". Fluid Phase Equilibria 180, n.º 1-2 (abril de 2001): 195–204. http://dx.doi.org/10.1016/s0378-3812(01)00351-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Conley, Brandon D., Burl C. Yearwood, Sean Parkin e David A. Atwood. "Ammonium hexafluorosilicate salts". Journal of Fluorine Chemistry 115, n.º 2 (junho de 2002): 155–60. http://dx.doi.org/10.1016/s0022-1139(02)00046-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Shcherbakova, I. V., S. V. Verin e E. V. Kuznetsov. "2-Benzopyrylium salts". Chemistry of Natural Compounds 25, n.º 1 (1989): 65–69. http://dx.doi.org/10.1007/bf00596704.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Verin, S. V., D. �. Tosunyan, P. I. Zakharov, V. K. Shevtsov e E. V. Kuznetsov. "2-Benzopyrylium salts." Chemistry of Heterocyclic Compounds 26, n.º 9 (setembro de 1990): 980–83. http://dx.doi.org/10.1007/bf00472475.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Zhivich, A. B., G. I. Koldobskii e V. A. Ostrovskii. "Tetrazolium salts (review)". Chemistry of Heterocyclic Compounds 26, n.º 12 (dezembro de 1990): 1319–28. http://dx.doi.org/10.1007/bf00473958.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia