Artigos de revistas sobre o tema "Ruthenium-based catalysts"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ruthenium-based catalysts".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Singh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts". Catalysts 9, n.º 2 (12 de fevereiro de 2019): 173. http://dx.doi.org/10.3390/catal9020173.
Texto completo da fonteNahra, Fady, e Catherine S. J. Cazin. "Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands". Chemical Society Reviews 50, n.º 5 (2021): 3094–142. http://dx.doi.org/10.1039/c8cs00836a.
Texto completo da fonteWeissenberger, Tobias, Ralf Zapf, Helmut Pennemann e Gunther Kolb. "Catalyst Coatings for Ammonia Decomposition in Microchannels at High Temperature and Elevated Pressure for Use in Decentralized and Mobile Hydrogen Generation". Catalysts 14, n.º 2 (26 de janeiro de 2024): 104. http://dx.doi.org/10.3390/catal14020104.
Texto completo da fontePodolean, Iunia, Mara Dogaru, Nicolae Cristian Guzo, Oana Adriana Petcuta, Elisabeth E. Jacobsen, Adela Nicolaev, Bogdan Cojocaru, Madalina Tudorache, Vasile I. Parvulescu e Simona M. Coman. "Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine". Nanomaterials 14, n.º 3 (29 de janeiro de 2024): 277. http://dx.doi.org/10.3390/nano14030277.
Texto completo da fonteReany, Ofer, e N. Gabriel Lemcoff. "Light guided chemoselective olefin metathesis reactions". Pure and Applied Chemistry 89, n.º 6 (27 de junho de 2017): 829–40. http://dx.doi.org/10.1515/pac-2016-1221.
Texto completo da fonteChen, Hui, Runxu Deng, Shixin Gao e Feng Liu. "Preparation of porous iridium-ruthenium-based acidic water oxidation catalyst by ascorbic acid reduction and evaporation". Journal of Physics: Conference Series 2566, n.º 1 (1 de agosto de 2023): 012017. http://dx.doi.org/10.1088/1742-6596/2566/1/012017.
Texto completo da fonteTruszkiewicz, Elżbieta, Wioletta Raróg-Pilecka, Magdalena Zybert, Malwina Wasilewska-Stefańska, Ewa Topolska e Kamila Michalska. "Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation". Polish Journal of Chemical Technology 16, n.º 4 (1 de dezembro de 2014): 106–10. http://dx.doi.org/10.2478/pjct-2014-0079.
Texto completo da fonteZhong, He Xiang, Hua Min Zhang e Mei Ri Wang. "Oxygen Reduction Reaction on Carbon Supported Ruthenium-Based Electrocatalysts in PEMFC". Materials Science Forum 675-677 (fevereiro de 2011): 97–100. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.97.
Texto completo da fonteMa, Peng, Jiaren Zhang, Xiaqian Wu e Jianhui Wang. "Ruthenium Metathesis Catalysts with Imidazole Ligands". Catalysts 13, n.º 2 (26 de janeiro de 2023): 276. http://dx.doi.org/10.3390/catal13020276.
Texto completo da fonteDunn, E., e J. Tunge. "Decarboxylative Allylation of Ketone Enolates with Rh, Ir, and Mo". Latvian Journal of Chemistry 51, n.º 1-2 (1 de janeiro de 2012): 31–40. http://dx.doi.org/10.2478/v10161-012-0007-x.
Texto completo da fonteLovic, Jelena. "The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media". Journal of the Serbian Chemical Society 72, n.º 7 (2007): 709–12. http://dx.doi.org/10.2298/jsc0707709l.
Texto completo da fonteMüller, Daniel S., Olivier Baslé e Marc Mauduit. "A tutorial review of stereoretentive olefin metathesis based on ruthenium dithiolate catalysts". Beilstein Journal of Organic Chemistry 14 (7 de dezembro de 2018): 2999–3010. http://dx.doi.org/10.3762/bjoc.14.279.
Texto completo da fonteJawiczuk, Magdalena, Anna Marczyk e Bartosz Trzaskowski. "Decomposition of Ruthenium Olefin Metathesis Catalyst". Catalysts 10, n.º 8 (5 de agosto de 2020): 887. http://dx.doi.org/10.3390/catal10080887.
Texto completo da fonteBazhenova, Maria A., Leonid A. Kulikov, Daria A. Makeeva, Anton L. Maximov e Eduard A. Karakhanov. "Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks". Polymers 15, n.º 23 (4 de dezembro de 2023): 4618. http://dx.doi.org/10.3390/polym15234618.
Texto completo da fonteDaniel, Quentin, Lei Wang, Lele Duan, Fusheng Li e Licheng Sun. "Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation". Dalton Transactions 45, n.º 37 (2016): 14689–96. http://dx.doi.org/10.1039/c6dt01287f.
Texto completo da fonteVieri, Hizkia Manuel, Arash Badakhsh e Sun Hee Choi. "Comparative Study of Ba, Cs, K, and Li as Promoters for Ru/La2Ce2O7-Based Catalyst for Ammonia Synthesis". International Journal of Energy Research 2023 (13 de maio de 2023): 1–11. http://dx.doi.org/10.1155/2023/2072245.
Texto completo da fonteGutiérrez-Flores, Selena, Lidia García-Barrera, Daniel Zárate-Saldaña e Jorge A. Cruz-Morales. "Synthesis of heterogeneous metathesis catalysts for the development of sustainable processes". Renewable Energy, Biomass & Sustainability 3, n.º 1 (12 de julho de 2022): 75–85. http://dx.doi.org/10.56845/rebs.v3i1.40.
Texto completo da fonteThongboon, Surached, Pacharaporn Rittiron, Danusorn Kiatsaengthong, Thanaphat Chukeaw e Anusorn Seubsai. "Propylene Epoxidation to Propylene Oxide Over RuO2, CuO, TeO2, and TiO2 Supported on Modified Mesoporous Silicas". Journal of Nanoscience and Nanotechnology 20, n.º 6 (1 de junho de 2020): 3466–77. http://dx.doi.org/10.1166/jnn.2020.17408.
Texto completo da fonteDrummond, Samuel M., Jennifer Naglic, Thossaporn Onsree, Santosh K. Balijepalli, Alexis Allegro, Stephanie N. Orraca Albino, Katherine M. O’Connell e Jochen Lauterbach. "Promoted Ru/PrOx Catalysts for Mild Ammonia Synthesis". Catalysts 14, n.º 9 (29 de agosto de 2024): 572. http://dx.doi.org/10.3390/catal14090572.
Texto completo da fontePye, Scott J., Justin M. Chalker e Colin L. Raston. "Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts". Australian Journal of Chemistry 73, n.º 12 (2020): 1138. http://dx.doi.org/10.1071/ch20005.
Texto completo da fonteSun, Xiandi, Zhiyuan Cheng, Hang Liu, Siyu Chen e Ya-Rong Zheng. "Porous Ruthenium–Tungsten–Zinc Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction in Alkali". Nanomaterials 14, n.º 9 (6 de maio de 2024): 808. http://dx.doi.org/10.3390/nano14090808.
Texto completo da fonteSanford, Melanie S, Lawrence M Henling, Michael W Day e Robert H Grubbs. "Ruthenium-Based Four-Coordinate Olefin Metathesis Catalysts". Angewandte Chemie 112, n.º 19 (2 de outubro de 2000): 3593–95. http://dx.doi.org/10.1002/1521-3757(20001002)112:19<3593::aid-ange3593>3.0.co;2-m.
Texto completo da fonteSanford, Melanie S, Lawrence M Henling, Michael W Day e Robert H Grubbs. "Ruthenium-Based Four-Coordinate Olefin Metathesis Catalysts". Angewandte Chemie 39, n.º 19 (2 de outubro de 2000): 3451–53. http://dx.doi.org/10.1002/1521-3773(20001002)39:19<3451::aid-anie3451>3.0.co;2-u.
Texto completo da fonteVillani, Kenneth, Christine E. A. Kirschhock, Duoduo Liang, Gustaaf Van Tendeloo e Johan A. Martens. "Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts". Angewandte Chemie 118, n.º 19 (5 de maio de 2006): 3178–81. http://dx.doi.org/10.1002/ange.200503799.
Texto completo da fonteVillani, Kenneth, Christine E. A. Kirschhock, Duoduo Liang, Gustaaf Van Tendeloo e Johan A. Martens. "Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts". Angewandte Chemie International Edition 45, n.º 19 (5 de maio de 2006): 3106–9. http://dx.doi.org/10.1002/anie.200503799.
Texto completo da fonteLei, Y. J., X. B. Wang, C. Song, F. H. Li e X. R. Wang. "A study on ruthenium-based catalysts for pharmaceutical wastewater treatment". Water Science and Technology 64, n.º 1 (1 de julho de 2011): 117–21. http://dx.doi.org/10.2166/wst.2011.585.
Texto completo da fonteSimonneaux, Gérard, e Pietro Tagliatesta. "Metalloporphyrin catalysts for organic synthesis". Journal of Porphyrins and Phthalocyanines 08, n.º 09 (setembro de 2004): 1166–71. http://dx.doi.org/10.1142/s1088424604000507.
Texto completo da fonteMelián-Rodríguez, Saravanamurugan, Meier, Kegnæs e Riisager. "Ru-Catalyzed Oxidative Cleavage of Guaiacyl Glycerol--Guaiacyl Ether-a Representative -O-4 Lignin Model Compound". Catalysts 9, n.º 10 (3 de outubro de 2019): 832. http://dx.doi.org/10.3390/catal9100832.
Texto completo da fonteMichrowska, Anna, e Karol Grela. "Quest for the ideal olefin metathesis catalyst". Pure and Applied Chemistry 80, n.º 1 (1 de janeiro de 2008): 31–43. http://dx.doi.org/10.1351/pac200880010031.
Texto completo da fontePieczykolan, Michał, Justyna Czaban-Jóźwiak, Maura Malinska, Krzysztof Woźniak, Reto Dorta, Anna Rybicka, Anna Kajetanowicz e Karol Grela. "The Influence of Various N-Heterocyclic Carbene Ligands on Activity of Nitro-Activated Olefin Metathesis Catalysts". Molecules 25, n.º 10 (12 de maio de 2020): 2282. http://dx.doi.org/10.3390/molecules25102282.
Texto completo da fonteEcheverri, David Alexander, Luis Alberto Rios e Juan Miguel Marín. "Synthesising unsaturated fatty alcohols from fatty methyl esters using catalysts based on ruthenium and tin supported on alumina". Ingeniería e Investigación 31, n.º 1 (1 de janeiro de 2011): 74–82. http://dx.doi.org/10.15446/ing.investig.v31n1.20528.
Texto completo da fonteYim, Kyungmin, Yoomo Koo, Sung Jong Yoo e Jinsoo Kim. "Facile Spray Pyrolysis Synthesis of Ruthenium Single-Atomic Catalyst with High Activity and Stability for Hydrogen Evolution Reactions over a Wide pH Range". ECS Meeting Abstracts MA2022-01, n.º 34 (7 de julho de 2022): 1394. http://dx.doi.org/10.1149/ma2022-01341394mtgabs.
Texto completo da fonteTelleria, A., P. W. N. M. van Leeuwen e Z. Freixa. "Azobenzene-based ruthenium(ii) catalysts for light-controlled hydrogen generation". Dalton Transactions 46, n.º 11 (2017): 3569–78. http://dx.doi.org/10.1039/c7dt00542c.
Texto completo da fonteZhang, Yajing, Qian Wang, Zongsheng Yan, Donglai Ma e Yuguang Zheng. "Visible-light-mediated copper photocatalysis for organic syntheses". Beilstein Journal of Organic Chemistry 17 (12 de outubro de 2021): 2520–42. http://dx.doi.org/10.3762/bjoc.17.169.
Texto completo da fonteOgba, O. M., N. C. Warner, D. J. O’Leary e R. H. Grubbs. "Recent advances in ruthenium-based olefin metathesis". Chemical Society Reviews 47, n.º 12 (2018): 4510–44. http://dx.doi.org/10.1039/c8cs00027a.
Texto completo da fonteBorisov, Vadim A., Zaliya A. Fedorova, Victor L. Temerev, Mikhail V. Trenikhin, Dmitry A. Svintsitskiy, Ivan V. Muromtsev, Alexey B. Arbuzov, Alexey B. Shigarov, Pavel V. Snytnikov e Dmitry A. Shlyapin. "Ceria–Zirconia-Supported Ruthenium Catalysts for Hydrogen Production by Ammonia Decomposition". Energies 16, n.º 4 (9 de fevereiro de 2023): 1743. http://dx.doi.org/10.3390/en16041743.
Texto completo da fonteMartins, Joana A., A. Catarina Faria, Miguel A. Soria, Carlos V. Miguel, Alírio E. Rodrigues e Luís M. Madeira. "CO2 Methanation over Hydrotalcite-Derived Nickel/Ruthenium and Supported Ruthenium Catalysts". Catalysts 9, n.º 12 (1 de dezembro de 2019): 1008. http://dx.doi.org/10.3390/catal9121008.
Texto completo da fonteShi, Wenbo, Xiaolong Liu, Junlin Zeng, Jian Wang, Yaodong Wei e Tingyu Zhu. "Gas-solid catalytic reactions over ruthenium-based catalysts". Chinese Journal of Catalysis 37, n.º 8 (agosto de 2016): 1181–92. http://dx.doi.org/10.1016/s1872-2067(15)61124-x.
Texto completo da fonteSmit, Wietse, Vitali Koudriavtsev, Giovanni Occhipinti, Karl W. Törnroos e Vidar R. Jensen. "Phosphine-Based Z-Selective Ruthenium Olefin Metathesis Catalysts". Organometallics 35, n.º 11 (18 de maio de 2016): 1825–37. http://dx.doi.org/10.1021/acs.organomet.6b00214.
Texto completo da fonteLozano-Vila, Ana M., Stijn Monsaert, Agata Bajek e Francis Verpoort. "Ruthenium-Based Olefin Metathesis Catalysts Derived from Alkynes". Chemical Reviews 110, n.º 8 (11 de agosto de 2010): 4865–909. http://dx.doi.org/10.1021/cr900346r.
Texto completo da fonteVougioukalakis, Georgios C., e Robert H. Grubbs. "Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts†". Chemical Reviews 110, n.º 3 (10 de março de 2010): 1746–87. http://dx.doi.org/10.1021/cr9002424.
Texto completo da fonteTijani, Amina, Bernard Coq e François Figueras. "Hydrogenation ofpara-chloronitrobenzene over supported ruthenium-based catalysts". Applied Catalysis 76, n.º 2 (setembro de 1991): 255–66. http://dx.doi.org/10.1016/0166-9834(91)80051-w.
Texto completo da fonteKHAN, F., e N. SAHU. "Highly efficient and recyclable ruthenium-based supported catalysts". Journal of Catalysis 231, n.º 2 (25 de abril de 2005): 438–42. http://dx.doi.org/10.1016/j.jcat.2005.02.001.
Texto completo da fonteHarvey, Timothy G., Trevor W. Matheson, Kerry C. Pratt e Mark S. Stanborought. "Hydroprocessing of shale oil using ruthenium-based catalysts". Fuel 66, n.º 6 (junho de 1987): 766–70. http://dx.doi.org/10.1016/0016-2361(87)90121-9.
Texto completo da fonteDinger, Maarten B, e Johannes C Mol. "High Turnover Numbers with Ruthenium-Based Metathesis Catalysts". Advanced Synthesis & Catalysis 344, n.º 6-7 (agosto de 2002): 671. http://dx.doi.org/10.1002/1615-4169(200208)344:6/7<671::aid-adsc671>3.0.co;2-g.
Texto completo da fonteGil-Sepulcre, Marcos, Michael Böhler, Mauro Schilling, Fernando Bozoglian, Cyril Bachmann, Dominik Scherrer, Thomas Fox et al. "Ruthenium Water Oxidation Catalysts based on Pentapyridyl Ligands". ChemSusChem 10, n.º 22 (14 de novembro de 2017): 4517–25. http://dx.doi.org/10.1002/cssc.201701747.
Texto completo da fonteShultz, Lorianne R., Corbin Feit, Jordan Stanberry, Zhengning Gao, Shaohua Xie, Vasileios A. Anagnostopoulos, Fudong Liu, Parag Banerjee e Titel Jurca. "Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol". Catalysts 11, n.º 2 (25 de janeiro de 2021): 165. http://dx.doi.org/10.3390/catal11020165.
Texto completo da fonteOrlando, Antonio, Fiorella Lucarini, Elisabetta Benazzi, Federico Droghetti, Albert Ruggi e Mirco Natali. "Rethinking Electronic Effects in Photochemical Hydrogen Evolution Using CuInS2@ZnS Quantum Dots Sensitizers". Molecules 27, n.º 23 (27 de novembro de 2022): 8277. http://dx.doi.org/10.3390/molecules27238277.
Texto completo da fonteSolodenko, Wladimir, Angelino Doppiu, René Frankfurter, Carla Vogt e Andreas Kirschning. "Silica Immobilized Hoveyda Type Pre-Catalysts: Convenient and Reusable Heterogeneous Catalysts for Batch and Flow Olefin Metathesis". Australian Journal of Chemistry 66, n.º 2 (2013): 183. http://dx.doi.org/10.1071/ch12434.
Texto completo da fonteBalcar, Hynek, e Jiří Čejka. "SBA-15 as a Support for Effective Olefin Metathesis Catalysts". Catalysts 9, n.º 9 (2 de setembro de 2019): 743. http://dx.doi.org/10.3390/catal9090743.
Texto completo da fonte