Literatura científica selecionada sobre o tema "Ruthenium-based catalysts"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Ruthenium-based catalysts".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Ruthenium-based catalysts"
Singh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts". Catalysts 9, n.º 2 (12 de fevereiro de 2019): 173. http://dx.doi.org/10.3390/catal9020173.
Texto completo da fonteNahra, Fady, e Catherine S. J. Cazin. "Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands". Chemical Society Reviews 50, n.º 5 (2021): 3094–142. http://dx.doi.org/10.1039/c8cs00836a.
Texto completo da fonteWeissenberger, Tobias, Ralf Zapf, Helmut Pennemann e Gunther Kolb. "Catalyst Coatings for Ammonia Decomposition in Microchannels at High Temperature and Elevated Pressure for Use in Decentralized and Mobile Hydrogen Generation". Catalysts 14, n.º 2 (26 de janeiro de 2024): 104. http://dx.doi.org/10.3390/catal14020104.
Texto completo da fontePodolean, Iunia, Mara Dogaru, Nicolae Cristian Guzo, Oana Adriana Petcuta, Elisabeth E. Jacobsen, Adela Nicolaev, Bogdan Cojocaru, Madalina Tudorache, Vasile I. Parvulescu e Simona M. Coman. "Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine". Nanomaterials 14, n.º 3 (29 de janeiro de 2024): 277. http://dx.doi.org/10.3390/nano14030277.
Texto completo da fonteReany, Ofer, e N. Gabriel Lemcoff. "Light guided chemoselective olefin metathesis reactions". Pure and Applied Chemistry 89, n.º 6 (27 de junho de 2017): 829–40. http://dx.doi.org/10.1515/pac-2016-1221.
Texto completo da fonteChen, Hui, Runxu Deng, Shixin Gao e Feng Liu. "Preparation of porous iridium-ruthenium-based acidic water oxidation catalyst by ascorbic acid reduction and evaporation". Journal of Physics: Conference Series 2566, n.º 1 (1 de agosto de 2023): 012017. http://dx.doi.org/10.1088/1742-6596/2566/1/012017.
Texto completo da fonteTruszkiewicz, Elżbieta, Wioletta Raróg-Pilecka, Magdalena Zybert, Malwina Wasilewska-Stefańska, Ewa Topolska e Kamila Michalska. "Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation". Polish Journal of Chemical Technology 16, n.º 4 (1 de dezembro de 2014): 106–10. http://dx.doi.org/10.2478/pjct-2014-0079.
Texto completo da fonteZhong, He Xiang, Hua Min Zhang e Mei Ri Wang. "Oxygen Reduction Reaction on Carbon Supported Ruthenium-Based Electrocatalysts in PEMFC". Materials Science Forum 675-677 (fevereiro de 2011): 97–100. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.97.
Texto completo da fonteMa, Peng, Jiaren Zhang, Xiaqian Wu e Jianhui Wang. "Ruthenium Metathesis Catalysts with Imidazole Ligands". Catalysts 13, n.º 2 (26 de janeiro de 2023): 276. http://dx.doi.org/10.3390/catal13020276.
Texto completo da fonteDunn, E., e J. Tunge. "Decarboxylative Allylation of Ketone Enolates with Rh, Ir, and Mo". Latvian Journal of Chemistry 51, n.º 1-2 (1 de janeiro de 2012): 31–40. http://dx.doi.org/10.2478/v10161-012-0007-x.
Texto completo da fonteTeses / dissertações sobre o assunto "Ruthenium-based catalysts"
Robinson, Alan. "Novel catalysts and additives for ruthenium-based metathesis systems". Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508098.
Texto completo da fonteMOTOKI, YOSHIDA. "Synthesis of Ruthenium-based Water Oxidation Catalysts and Mechanistic Study". Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173843.
Texto completo da fonteUrbina-Blanco, César A. "Design and synthesis of ruthenium indenylidene-based catalysts for olefin metathesis". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3737.
Texto completo da fonteGowda, Anitha Shankaralinge. "HYDROGENATION AND HYDROGENOLYSIS OF FURAN DERIVATIVES USING BIPYRIDINE-BASED ELECTROPHILIC RUTHENIUM(II) CATALYSTS". UKnowledge, 2013. http://uknowledge.uky.edu/chemistry_etds/29.
Texto completo da fonteBashal, Ali Habib. "Aqueous phase hydrogenation of succinic acid using mono-and bi-metallic ruthenium-based catalysts". Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3021601/.
Texto completo da fonteMorgan, John Philip Stoltz Brian M. Grubbs Robert H. "Ruthenium-based olefin metathesis catalysts coordinated with n-heterocyclic carbene ligands : synthesis and applications /". Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-10222002-204928.
Texto completo da fonteFraser, Ian. "The feasibility of high synthesis gas conversion over ruthenium promoted iron-based Fischer Tropsch catalyst". Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2588.
Texto completo da fonteOne of the very promising synthetic fuel production strategies is the Fischer-Tropsch process, founded on the Fischer-Tropsch Synthesis, which owes its discovery to the namesake researchers Franz Fischer and Hans Tropsch. The Fischer-Tropsch Synthesis (FTS) converts via complex polymerisation reaction a mixture of CO and H2 over transition metal catalysts to a complex mixture of hydrocarbons and oxygen containing compounds with water as major by-product. The mixture of CO and H2 (termed syngas) may be obtained by partial oxidation of carbon containing base feedstocks such as coal, biomass or natural gas via gasification or reforming. The Fischer-Tropsch (FT) process thus presents the opportunity to convert carbon containing feedstocks to liquid fuels, chemicals or hydrocarbon waxes, which makes, for instance, the monetisation of stranded gas or associated gas a possibility. The FT-process is typically carried out in two modes of operation: low temperature Fischer-Tropsch (LTFT) and high temperature Fischer-Tropsch (HTFT). LTFT is normally operated at temperatures of 200 – 250 °C and pressures of 10 – 45 bar to target production of high molecular weight hydrocarbons, while HTFT is operated at 300 – 350 °C and 25 bar to target gasoline production. The catalytically active metals currently used commercially are iron and cobalt, since product selectivity over nickel is almost exclusively to methane and ruthenium is highly expensive in addition to requiring very high pressures to perform optimally. Fe is much cheaper, but tends to deactivate more rapidly than Co due to oxidation in the presence of high H2O partial pressures. One of the major drawbacks to using Fe as FT catalyst is the requirement of lower per pass conversion which necessitates tail gas recycle to extend catalyst life and attain acceptable overall conversions. A more active or similarly active but more stable Fe-catalyst would thus be advantageous. For this reason promotion of a self-prepared typical LTFT Fe-catalyst with Ru was investigated. A precipitated K-promoted Fe-catalyst was prepared by combination of co-precipitation and incipient wetness impregnation and a ruthenium containing catalyst prepared from this by impregnation with Ru3(CO)12. The catalysts, which had a target composition of 100 Fe/30 Al2O3/5 K and 100 Fe/30 Al2O3/5 K/3 Ru, were characterised using XRD, SEMEDX, ICP-OES, TPR and BET N2-physisorption, before testing at LTFT conditions of 250 °C and 20 bar in a continuously stirred slurry phase reactor.
Zhang, Hui-Jun. "Novel syntheses from building blocks based on 1,3-butadienyl skeleton and new polysubstitued ruthenium based catalysts for regioselective allylation". Rennes 1, 2010. http://www.theses.fr/2010REN1S011.
Texto completo da fonteUn objectif de cette thèse était la préparation de nouveaux fragments organique à partir du squelette butadiényle et leurs applications en synthèse organique. Des 1,1,4,4-tétrahalo-1,3-butadiènes ont été préparés de façon stéréosélective. La réaction de ces butadiènes avec le butyllithium et leur couplage de Suzuki avec des acides arylboroniques constituent des transformations nouvelles et originales. De nouveaux gem-diboryldiènes, également d���excellents agents de couplage de Suzuki, ont été obtenus à partir des gem-dihalodiènes correspondants. Le traitement avec LiAlH₄ de 1,4-dicyano-1,4-bis(triméthylsilyl)-1,3-diènes a conduit à une nouvelle réaction de cyclisation induite par des hydrures pour former des cyclopentadiènes multi-fonctionnalisés avec de très bons rendements. Dans un deuxième objectif, une série de complexes inédits du ruthénium porteurs de nouveaux ligands Cp et N-O chelatants ont été conçus et préparés avec l’objectif d’obtenir de bonnes propriétés catalytiques en allylation de nucléophiles. Ces complexes ont été utilisés comme catalyseurs d’allylation et ont conduit pour la première fois à d’excellentes régiosélectivités en faveur des produits branchés à partir de substrats allyliques purement aliphatiques et à la préparation de dérivés vinylsilanes fonctionnels
Delgado, Jaime Mario Ulises. "Electronic structure studies of ruthenium-based catalysts for olefin metathesis : an x-ray absoprtion spectroscopy perspective". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17434.
Texto completo da fonteBernardi, Andrea. "Synthesis, characterization and catalytic performances of ruthenium-based catalysts for the acceptorless dehydrogenative coupling of butanol". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8521/.
Texto completo da fonteCapítulos de livros sobre o assunto "Ruthenium-based catalysts"
Grubbs, R. H., e M. Sanford. "Mechanism of Ruthenium Based Olefin Metathesis Catalysts". In Ring Opening Metathesis Polymerisation and Related Chemistry, 17–21. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0373-5_2.
Texto completo da fonteIlker, M. Firat, Habib Skaff, Todd Emrick e E. Bryan Coughlin. "Metathesis and Polyolefin Growth on Cadmium Selenide Surfaces Using Ruthenium-Based Catalysts". In Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymers and Advanced Material Applications, 263–70. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0066-6_22.
Texto completo da fonteQuigley, Brendan L., e Robert H. Grubbs. "Catalyst Structure andCis-TransSelectivity in Ruthenium-based Olefin Metathesis". In Ligand Design in Metal Chemistry, 15–45. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118839621.ch2.
Texto completo da fontePettinari, Claudio, Riccardo Pettinari, Corrado Di Nicola e Fabio Marchetti. "Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes with Ancillary Pyrazole-Based Ligands". In Advances in Organometallic Chemistry and Catalysis, 269–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118742952.ch21.
Texto completo da fonteNoels, A. F., e A. Demonceau. "Metathesis of Low-Strain Olefins and Functionalized Olefins with New Ruthenium-Based Catalyst Systems". In Metathesis Polymerization of Olefins and Polymerization of Alkynes, 29–46. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5188-7_2.
Texto completo da fonteKarabulut, Solmaz, e Francis Verpoort. "Ring-Opening Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalyst Coordinated with 1,3-Bis(2,6-Diisopropylphenyl)-4,5-Dihydroimidazoline". In Metathesis Chemistry, 185–92. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6091-5_11.
Texto completo da fonteErnst Müller, Thomas. "Catalysis with Ruthenium for Sustainable Carbon Cycles". In Ruthenium - Materials Properties, Device Characterizations, and Advanced Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112101.
Texto completo da fonte"Ruthenium Sulfide Based Catalysts". In Hydrotreating Technology for Pollution Control, 191–204. CRC Press, 1996. http://dx.doi.org/10.1201/9781482273540-13.
Texto completo da fontevon Angerer, S. "With Ruthenium-Based Catalysts". In Ketones, 1. Georg Thieme Verlag KG, 2005. http://dx.doi.org/10.1055/sos-sd-026-00033.
Texto completo da fonte"Ruthenium Based Ammonia Synthesis Catalysts". In Ammonia Synthesis Catalysts, 425–542. WORLD SCIENTIFIC / CHEMICAL INDUSTRY PRESS, CHINA, 2013. http://dx.doi.org/10.1142/9789814355780_0006.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Ruthenium-based catalysts"
Sudiyarmanto, Sudiyarmanto, Fauzan Aulia, Fauzul Adzim, Hendri Setiyanto e Adid Adep Dwiatmoko. "Catalytic conversion of furfural to furfuryl alcohol over ruthenium based catalysts". In SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2018. http://dx.doi.org/10.1063/1.5064313.
Texto completo da fonteBartley, Gordon J., Zachary Tonzetich e Ryan Hartley. "Ruthenium-Based Catalyst in EGR Leg of a D-EGR Engine Offers Combustion Improvements Through Selective NOX Removal". In SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0952.
Texto completo da fonteYang, Lijun, e Wallace Woon-Fong Leung. "Improvement of Dye Sensitized Solar Cells With Nanofiber-Based Anode". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64710.
Texto completo da fonteBasu, Sumit, Yuan Zheng e Jay P. Gore. "Chemical Kinetics Parameter Estimation for Ammonia Borane Hydrolysis". In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56139.
Texto completo da fonte