Artigos de revistas sobre o tema "Run-And-Tumble particles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Run-And-Tumble particles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Paoluzzi, Matteo, Andrea Puglisi e Luca Angelani. "Entropy Production of Run-and-Tumble Particles". Entropy 26, n.º 6 (24 de maio de 2024): 443. http://dx.doi.org/10.3390/e26060443.
Texto completo da fonteRedig, F., e H. van Wiechen. "Stationary Fluctuations of Run-and-Tumble Particles". Markov Processes And Related Fields 30, n.º 2024 №2 (30) (26 de agosto de 2024): 297–331. http://dx.doi.org/10.61102/1024-2953-mprf.2024.30.2.003.
Texto completo da fontePaoluzzi, M., R. Di Leonardo e L. Angelani. "Run-and-tumble particles in speckle fields". Journal of Physics: Condensed Matter 26, n.º 37 (8 de agosto de 2014): 375101. http://dx.doi.org/10.1088/0953-8984/26/37/375101.
Texto completo da fonteSolon, A. P., M. E. Cates e J. Tailleur. "Active brownian particles and run-and-tumble particles: A comparative study". European Physical Journal Special Topics 224, n.º 7 (julho de 2015): 1231–62. http://dx.doi.org/10.1140/epjst/e2015-02457-0.
Texto completo da fonteMartinez, Raul, Francisco Alarcon, Juan Luis Aragones e Chantal Valeriani. "Trapping flocking particles with asymmetric obstacles". Soft Matter 16, n.º 20 (2020): 4739–45. http://dx.doi.org/10.1039/c9sm02427a.
Texto completo da fonteGutiérrez, C. Miguel Barriuso, Christian Vanhille-Campos, Francisco Alarcón, Ignacio Pagonabarraga, Ricardo Brito e Chantal Valeriani. "Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems". Soft Matter 17, n.º 46 (2021): 10479–91. http://dx.doi.org/10.1039/d1sm01006a.
Texto completo da fontePeruani, Fernando, e Gustavo J. Sibona. "Reaction processes among self-propelled particles". Soft Matter 15, n.º 3 (2019): 497–503. http://dx.doi.org/10.1039/c8sm01502c.
Texto completo da fonteBijnens, Bram, e Christian Maes. "Pushing run-and-tumble particles through a rugged channel". Journal of Statistical Mechanics: Theory and Experiment 2021, n.º 3 (1 de março de 2021): 033206. http://dx.doi.org/10.1088/1742-5468/abe29e.
Texto completo da fonteSingh, Chamkor. "Correction: Guided run-and-tumble active particles: wall accumulation and preferential deposition". Soft Matter 18, n.º 3 (2022): 684. http://dx.doi.org/10.1039/d1sm90221k.
Texto completo da fonteElgeti, Jens, e Gerhard Gompper. "Run-and-tumble dynamics of self-propelled particles in confinement". EPL (Europhysics Letters) 109, n.º 5 (1 de março de 2015): 58003. http://dx.doi.org/10.1209/0295-5075/109/58003.
Texto completo da fonteZhang, Ziluo, e Gunnar Pruessner. "Field theory of free run and tumble particles in d dimensions". Journal of Physics A: Mathematical and Theoretical 55, n.º 4 (7 de janeiro de 2022): 045204. http://dx.doi.org/10.1088/1751-8121/ac37e6.
Texto completo da fonteMano, Tomoyuki, Jean-Baptiste Delfau, Junichiro Iwasawa e Masaki Sano. "Optimal run-and-tumble–based transportation of a Janus particle with active steering". Proceedings of the National Academy of Sciences 114, n.º 13 (14 de março de 2017): E2580—E2589. http://dx.doi.org/10.1073/pnas.1616013114.
Texto completo da fontede Pirey, Thibaut Arnoulx, e Frédéric van Wijland. "A run-and-tumble particle around a spherical obstacle: the steady-state distribution far-from-equilibrium". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 9 (1 de setembro de 2023): 093202. http://dx.doi.org/10.1088/1742-5468/ace42d.
Texto completo da fonteGrange, Pascal, e Xueqi Yao. "Run-and-tumble particles on a line with a fertile site". Journal of Physics A: Mathematical and Theoretical 54, n.º 32 (22 de julho de 2021): 325007. http://dx.doi.org/10.1088/1751-8121/ac0ebe.
Texto completo da fonteBertrand, Thibault, Pierre Illien, Olivier Bénichou e Raphaël Voituriez. "Dynamics of run-and-tumble particles in dense single-file systems". New Journal of Physics 20, n.º 11 (30 de novembro de 2018): 113045. http://dx.doi.org/10.1088/1367-2630/aaef6f.
Texto completo da fonteSantra, Ion, Urna Basu e Sanjib Sabhapandit. "Run-and-tumble particles in two dimensions under stochastic resetting conditions". Journal of Statistical Mechanics: Theory and Experiment 2020, n.º 11 (27 de novembro de 2020): 113206. http://dx.doi.org/10.1088/1742-5468/abc7b7.
Texto completo da fonteSantra, Ion, Urna Basu e Sanjib Sabhapandit. "Long time behavior of run-and-tumble particles in two dimensions". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 3 (1 de março de 2023): 033203. http://dx.doi.org/10.1088/1742-5468/acbc22.
Texto completo da fonteDerivaux, Jean-François, Robert L. Jack e Michael E. Cates. "Active–passive mixtures with bulk loading: a minimal active engine in one dimension". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 8 (1 de agosto de 2023): 083212. http://dx.doi.org/10.1088/1742-5468/acecfa.
Texto completo da fonteDas, Arghya, Abhishek Dhar e Anupam Kundu. "Gap statistics of two interacting run and tumble particles in one dimension". Journal of Physics A: Mathematical and Theoretical 53, n.º 34 (7 de agosto de 2020): 345003. http://dx.doi.org/10.1088/1751-8121/ab9cf3.
Texto completo da fontePut, Stefanie, Jonas Berx e Carlo Vanderzande. "Non-Gaussian anomalous dynamics in systems of interacting run-and-tumble particles". Journal of Statistical Mechanics: Theory and Experiment 2019, n.º 12 (23 de dezembro de 2019): 123205. http://dx.doi.org/10.1088/1742-5468/ab4e90.
Texto completo da fonteAngelani, Luca. "Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries". Journal of Physics A: Mathematical and Theoretical 48, n.º 49 (16 de novembro de 2015): 495003. http://dx.doi.org/10.1088/1751-8113/48/49/495003.
Texto completo da fonteCates, M. E., e J. Tailleur. "When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation". EPL (Europhysics Letters) 101, n.º 2 (1 de janeiro de 2013): 20010. http://dx.doi.org/10.1209/0295-5075/101/20010.
Texto completo da fonteMallmin, Emil, Richard A. Blythe e Martin R. Evans. "Exact spectral solution of two interacting run-and-tumble particles on a ring lattice". Journal of Statistical Mechanics: Theory and Experiment 2019, n.º 1 (7 de janeiro de 2019): 013204. http://dx.doi.org/10.1088/1742-5468/aaf631.
Texto completo da fonteBanerjee, Tirthankar, Robert L. Jack e Michael E. Cates. "Tracer dynamics in one dimensional gases of active or passive particles". Journal of Statistical Mechanics: Theory and Experiment 2022, n.º 1 (1 de janeiro de 2022): 013209. http://dx.doi.org/10.1088/1742-5468/ac4801.
Texto completo da fonteKhodabandehlou, Faezeh, e Christian Maes. "Local detailed balance for active particle models". Journal of Statistical Mechanics: Theory and Experiment 2024, n.º 6 (26 de junho de 2024): 063205. http://dx.doi.org/10.1088/1742-5468/ad5435.
Texto completo da fonteDerivaux, Jean-François, Robert L. Jack e Michael E. Cates. "Rectification in a mixture of active and passive particles subject to a ratchet potential". Journal of Statistical Mechanics: Theory and Experiment 2022, n.º 4 (1 de abril de 2022): 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.
Texto completo da fonteDerivaux, Jean-François, Robert L. Jack e Michael E. Cates. "Rectification in a mixture of active and passive particles subject to a ratchet potential". Journal of Statistical Mechanics: Theory and Experiment 2022, n.º 4 (1 de abril de 2022): 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.
Texto completo da fonteMathijssen, A. J. T. M., D. O. Pushkin e J. M. Yeomans. "Tracer trajectories and displacement due to a micro-swimmer near a surface". Journal of Fluid Mechanics 773 (27 de maio de 2015): 498–519. http://dx.doi.org/10.1017/jfm.2015.269.
Texto completo da fonteKrishnamurthy, Deepak, e Ganesh Subramanian. "Collective motion in a suspension of micro-swimmers that run-and-tumble and rotary diffuse". Journal of Fluid Mechanics 781 (28 de setembro de 2015): 422–66. http://dx.doi.org/10.1017/jfm.2015.473.
Texto completo da fonteRay, Chandraniva Guha, Indranil Mukherjee e P. K. Mohanty. "How motility affects Ising transitions". Journal of Statistical Mechanics: Theory and Experiment 2024, n.º 9 (17 de setembro de 2024): 093207. http://dx.doi.org/10.1088/1742-5468/ad685b.
Texto completo da fonteSandoval, Mario, Navaneeth K. Marath, Ganesh Subramanian e Eric Lauga. "Stochastic dynamics of active swimmers in linear flows". Journal of Fluid Mechanics 742 (21 de fevereiro de 2014): 50–70. http://dx.doi.org/10.1017/jfm.2013.651.
Texto completo da fonteTjhung, Elsen, Michael E. Cates e Davide Marenduzzo. "Contractile and chiral activities codetermine the helicity of swimming droplet trajectories". Proceedings of the National Academy of Sciences 114, n.º 18 (17 de abril de 2017): 4631–36. http://dx.doi.org/10.1073/pnas.1619960114.
Texto completo da fonteSon, Kwangmin, Filippo Menolascina e Roman Stocker. "Speed-dependent chemotactic precision in marine bacteria". Proceedings of the National Academy of Sciences 113, n.º 31 (20 de julho de 2016): 8624–29. http://dx.doi.org/10.1073/pnas.1602307113.
Texto completo da fonteEvans, Martin R., e Satya N. Majumdar. "Run and tumble particle under resetting: a renewal approach". Journal of Physics A: Mathematical and Theoretical 51, n.º 47 (30 de outubro de 2018): 475003. http://dx.doi.org/10.1088/1751-8121/aae74e.
Texto completo da fonteBressloff, Paul C. "Encounter-based model of a run-and-tumble particle". Journal of Statistical Mechanics: Theory and Experiment 2022, n.º 11 (1 de novembro de 2022): 113206. http://dx.doi.org/10.1088/1742-5468/aca0ed.
Texto completo da fonteSingh, Prashant, Sanjib Sabhapandit e Anupam Kundu. "Run-and-tumble particle in inhomogeneous media in one dimension". Journal of Statistical Mechanics: Theory and Experiment 2020, n.º 8 (19 de agosto de 2020): 083207. http://dx.doi.org/10.1088/1742-5468/aba7b1.
Texto completo da fonteChen, Yen-Fu, Zhengjia Wang, Kang-Ching Chu, Hsuan-Yi Chen, Yu-Jane Sheng e Heng-Kwong Tsao. "Hydrodynamic interaction induced breakdown of the state properties of active fluids". Soft Matter 14, n.º 25 (2018): 5319–26. http://dx.doi.org/10.1039/c8sm00881g.
Texto completo da fonteSingh, Prashant, e Anupam Kundu. "Generalised ‘Arcsine’ laws for run-and-tumble particle in one dimension". Journal of Statistical Mechanics: Theory and Experiment 2019, n.º 8 (16 de agosto de 2019): 083205. http://dx.doi.org/10.1088/1742-5468/ab3283.
Texto completo da fontePeng, Ying-Shuo, Yu-Jane Sheng e Heng-Kwong Tsao. "Partition of nanoswimmers between two immiscible phases: a soft and penetrable boundary". Soft Matter 16, n.º 21 (2020): 5054–61. http://dx.doi.org/10.1039/d0sm00298d.
Texto completo da fonteAngelani, Luca. "Run-and-tumble motion in trapping environments". Physica Scripta, 9 de novembro de 2023. http://dx.doi.org/10.1088/1402-4896/ad0b4e.
Texto completo da fonteAnchutkin, Gordei, Frank Cichos e Viktor Holubec. "Run-and-tumble motion of ellipsoidal microswimmers". Physical Review Research 6, n.º 4 (5 de novembro de 2024). http://dx.doi.org/10.1103/physrevresearch.6.043101.
Texto completo da fonteLoewe, Benjamin, Timofey Kozhukhov e Tyler Nathan Shendruk. "Invitation to contribute to Soft Matter Emerging Investigator Series Anisotropic run-and-tumble-turn dynamics". Soft Matter, 2024. http://dx.doi.org/10.1039/d3sm00589e.
Texto completo da fonteMaes, Christian, Kasper Meerts e Ward Struyve. "Diffraction and interference with run-and-tumble particles". Physica A: Statistical Mechanics and its Applications, abril de 2022, 127323. http://dx.doi.org/10.1016/j.physa.2022.127323.
Texto completo da fonteMaes, Christian, Kasper Meerts e Ward Struyve. "Diffraction and Interference with Run-and-Tumble Particles". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4036403.
Texto completo da fonteSaha, Soumya Kanti, Aikya Banerjee e Pradeep Kumar Mohanty. "Site-percolation transition of run-and-tumble particles". Soft Matter, 2024. http://dx.doi.org/10.1039/d4sm00838c.
Texto completo da fonteKumari, Aradhana, e Sourabh Lahiri. "Microscopic thermal machines using run-and-tumble particles". Pramana 95, n.º 4 (27 de novembro de 2021). http://dx.doi.org/10.1007/s12043-021-02225-7.
Texto completo da fonteAngelani, L., R. Di Leonardo e M. Paoluzzi. "First-passage time of run-and-tumble particles". European Physical Journal E 37, n.º 7 (julho de 2014). http://dx.doi.org/10.1140/epje/i2014-14059-4.
Texto completo da fonteLe Doussal, Pierre, Satya N. Majumdar e Grégory Schehr. "Noncrossing run-and-tumble particles on a line". Physical Review E 100, n.º 1 (11 de julho de 2019). http://dx.doi.org/10.1103/physreve.100.012113.
Texto completo da fonteVilela, Rafael Dias, Alfredo Jara Grados e Jean-Régis Angilella. "Dynamics and sorting of run-and-tumble particles in fluid flows with transport barriers". Journal of Physics: Complexity, 25 de junho de 2024. http://dx.doi.org/10.1088/2632-072x/ad5bb2.
Texto completo da fontevan Ginkel, Bart, Bart van Gisbergen e Frank Redig. "Run-and-Tumble Motion: The Role of Reversibility". Journal of Statistical Physics 183, n.º 3 (junho de 2021). http://dx.doi.org/10.1007/s10955-021-02787-1.
Texto completo da fonte