Literatura científica selecionada sobre o tema "Run-And-Tumble particles"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Run-And-Tumble particles".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Run-And-Tumble particles"

1

Paoluzzi, Matteo, Andrea Puglisi e Luca Angelani. "Entropy Production of Run-and-Tumble Particles". Entropy 26, n.º 6 (24 de maio de 2024): 443. http://dx.doi.org/10.3390/e26060443.

Texto completo da fonte
Resumo:
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-dependent parameters and extending the analysis to the case of d-dimensional motions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Redig, F., e H. van Wiechen. "Stationary Fluctuations of Run-and-Tumble Particles". Markov Processes And Related Fields 30, n.º 2024 №2 (30) (26 de agosto de 2024): 297–331. http://dx.doi.org/10.61102/1024-2953-mprf.2024.30.2.003.

Texto completo da fonte
Resumo:
We study the stationary fluctuations of independent run-and-tumble particles. We prove that the joint densities of particles with given internal state converges to an infinite dimensional Ornstein-Uhlenbeck process. We also consider an interacting case, where the particles are subjected to exclusion. We then study the fluctuations of the total density, which is a non-Markovian Gaussian process, and obtain its covariance in closed form. By considering small noise limits of this non-Markovian Gaussian process, we obtain in a concrete example a large deviation rate function containing memory terms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Paoluzzi, M., R. Di Leonardo e L. Angelani. "Run-and-tumble particles in speckle fields". Journal of Physics: Condensed Matter 26, n.º 37 (8 de agosto de 2014): 375101. http://dx.doi.org/10.1088/0953-8984/26/37/375101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Solon, A. P., M. E. Cates e J. Tailleur. "Active brownian particles and run-and-tumble particles: A comparative study". European Physical Journal Special Topics 224, n.º 7 (julho de 2015): 1231–62. http://dx.doi.org/10.1140/epjst/e2015-02457-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Martinez, Raul, Francisco Alarcon, Juan Luis Aragones e Chantal Valeriani. "Trapping flocking particles with asymmetric obstacles". Soft Matter 16, n.º 20 (2020): 4739–45. http://dx.doi.org/10.1039/c9sm02427a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Gutiérrez, C. Miguel Barriuso, Christian Vanhille-Campos, Francisco Alarcón, Ignacio Pagonabarraga, Ricardo Brito e Chantal Valeriani. "Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems". Soft Matter 17, n.º 46 (2021): 10479–91. http://dx.doi.org/10.1039/d1sm01006a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Peruani, Fernando, e Gustavo J. Sibona. "Reaction processes among self-propelled particles". Soft Matter 15, n.º 3 (2019): 497–503. http://dx.doi.org/10.1039/c8sm01502c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bijnens, Bram, e Christian Maes. "Pushing run-and-tumble particles through a rugged channel". Journal of Statistical Mechanics: Theory and Experiment 2021, n.º 3 (1 de março de 2021): 033206. http://dx.doi.org/10.1088/1742-5468/abe29e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Singh, Chamkor. "Correction: Guided run-and-tumble active particles: wall accumulation and preferential deposition". Soft Matter 18, n.º 3 (2022): 684. http://dx.doi.org/10.1039/d1sm90221k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Elgeti, Jens, e Gerhard Gompper. "Run-and-tumble dynamics of self-propelled particles in confinement". EPL (Europhysics Letters) 109, n.º 5 (1 de março de 2015): 58003. http://dx.doi.org/10.1209/0295-5075/109/58003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Run-And-Tumble particles"

1

Hahn, Léo. "Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.

Texto completo da fonte
Resumo:
1. Simuler des systèmes actifs et métastables avec des processus de Markov déterministes par morceaux (PDMPs): quelle dynamique choisir pour simuler efficacement des états métastables? comment exploiter directement la nature hors équilibre des PDMPs pour étudier les systèmes physiques modélisés? 2. Modéliser des systèmes actifs avec des PDMPs: quelles conditions doit remplir un système pour être modélisable par un PDMP? dans quels cas le système a-t-il un distribution stationnaire? comment calculer des quantités dynamiques (ex: rates de transition) dans ce cadre? 3. Améliorer les techniques de simulation de systèmes à l'équilibre: peut-on utiliser les résultats obtenus dans le cadre de systèmes hors équilibre pour accélérer la simulation de systèmes à l'équilibre? comment utiliser l'information topologique pour adapter la dynamique en temps réel?
1. Simulating active and metastable systems with piecewise deterministic Markov processes (PDMPs): - Which dynamics to choose to efficiently simulate metastable states? - How to directly exploit the non-equilibrium nature of PDMPs to study the modeled physical systems? 2. Modeling active systems with PDMPs: - What conditions must a system meet to be modeled by a PDMP? - In which cases does the system have a stationary distribution? - How to calculate dynamic quantities (e.g., transition rates) in this framework? 3. Improving simulation techniques for equilibrium systems: - Can results obtained in the context of non-equilibrium systems be used to accelerate the simulation of equilibrium systems? - How to use topological information to adapt the dynamics in real-time?
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Run-And-Tumble particles"

1

Vourc’h, Thomas, Julien Léopoldès e Hassan Peerhossaini. "Phototactic Behaviour of Active Fluids: Effects of Light Perturbation on Diffusion Coefficient of Bacterial Suspensions". In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4904.

Texto completo da fonte
Resumo:
Abstract Active fluids refer to the fluids that contain self-propelled particles such as bacteria or micro-algae, whose properties differ fundamentally from the passive fluids. Such particles often exhibit an intermittent motion; with high-motility “run” periods separated by low-motility “tumble” periods. The average motion can be modified with external stresses, such as nutrient or light gradient, leading to a directed movement called chemotaxis and phototaxis, respectively. Using cyanobacterium Synechocystis sp.PCC 6803, a model micro-organism to study photosynthesis, we track the bacterial response to light stimuli, under isotropic and non-isotropic conditions. In particular, we investigate how the intermittent motility is influenced by illumination. We find that just after a rise in light intensity, the probability to be in the run state increases. This feature vanishes after a typical time of about 1 hour, when initial probability is recovered. Our results are well described by a model based on the linear response theory. When the perturbation is anisotropic, the characteristic time of runs is longer whatever the direction, similar to what is observed with isotropic conditions. Yet we observe a collective motion toward the light source (phototaxis) and show that the bias emerges because of more frequent runs towards the light.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia