Artigos de revistas sobre o tema "Rumen Microbiology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Rumen Microbiology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Flachowsky, Gerhard. "Rumen Microbiology". Animal Feed Science and Technology 113, n.º 1-4 (março de 2004): 253–54. http://dx.doi.org/10.1016/j.anifeedsci.2003.09.002.
Texto completo da fonteFrance, J., e J. Dijkstra. "Applications of biomathematics to rumen microbiology". Reproduction Nutrition Development 37, Suppl. 1 (1997): 59–60. http://dx.doi.org/10.1051/rnd:19970740.
Texto completo da fonteTKALCIC, SUZANA, CATHY A. BROWN, BARRY G. HARMON, ANANT V. JAIN, ERIC P. O. MUELLER, ANDREW PARKS, KAREN L. JACOBSEN, SCOTT A. MARTIN, TONG ZHAO e MICHAEL P. DOYLE. "Effects of Diet on Rumen Proliferation and Fecal Shedding of Escherichia coli O157:H7 in Calves". Journal of Food Protection 63, n.º 12 (1 de dezembro de 2000): 1630–36. http://dx.doi.org/10.4315/0362-028x-63.12.1630.
Texto completo da fonteWang, Yan-Lu, Wei-Kang Wang, Qi-Chao Wu, Fan Zhang, Wen-Juan Li, Sheng-Li Li, Wei Wang, Zhi-Jun Cao e Hong-Jian Yang. "In Situ Rumen Degradation Characteristics and Bacterial Colonization of Corn Silages Differing in Ferulic and p-Coumaric Acid Contents". Microorganisms 10, n.º 11 (15 de novembro de 2022): 2269. http://dx.doi.org/10.3390/microorganisms10112269.
Texto completo da fonteLi, Zhipeng, Gemma Henderson, Yahan Yang e Guangyu Li. "Diversity of formyltetrahydrofolate synthetase genes in the rumens of roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed different diets". Canadian Journal of Microbiology 63, n.º 1 (janeiro de 2017): 11–19. http://dx.doi.org/10.1139/cjm-2016-0424.
Texto completo da fonteShakira, G., IH Mirza e A. Latif. "Scope of common DNA based methods for the study of rumen bacterial population". Bangladesh Journal of Animal Science 41, n.º 2 (10 de março de 2013): 141–46. http://dx.doi.org/10.3329/bjas.v41i2.14134.
Texto completo da fonteORPIN, C. G., Y. GREENWOOD, F. J. HALL e I. W. PATERSON. "The rumen microbiology of seaweed digestion in Orkney sheep". Journal of Applied Bacteriology 58, n.º 6 (junho de 1985): 585–96. http://dx.doi.org/10.1111/j.1365-2672.1985.tb01715.x.
Texto completo da fonteKOSTYUKOVSKY, VLADIMIR, TAMIO INAMOTO, TASUKE ANDO, YUTAKA NAKAI e KEIJI OGIMOTO. "Degradation of hay by rumen fungi in artificial rumen (RUSITEC)." Journal of General and Applied Microbiology 41, n.º 1 (1995): 83–86. http://dx.doi.org/10.2323/jgam.41.83.
Texto completo da fonteQiu, Xinjun, Xiaoli Qin, Liming Chen, Zhiming Chen, Rikang Hao, Siyu Zhang, Shunran Yang et al. "Serum Biochemical Parameters, Rumen Fermentation, and Rumen Bacterial Communities Are Partly Driven by the Breed and Sex of Cattle When Fed High-Grain Diet". Microorganisms 10, n.º 2 (30 de janeiro de 2022): 323. http://dx.doi.org/10.3390/microorganisms10020323.
Texto completo da fonteRabee, Alaa Emara, Khalid Z. Kewan, Hassan M. El Shaer, Mebarek Lamara e Ebrahim A. Sabra. "Effect of olive and date palm by-products on rumen methanogenic community in Barki sheep". AIMS Microbiology 8, n.º 1 (2022): 26–41. http://dx.doi.org/10.3934/microbiol.2022003.
Texto completo da fonteMalmuthuge, Nilusha, Philip J. Griebel e Le Luo Guan. "Taxonomic Identification of Commensal Bacteria Associated with the Mucosa and Digesta throughout the Gastrointestinal Tracts of Preweaned Calves". Applied and Environmental Microbiology 80, n.º 6 (17 de janeiro de 2014): 2021–28. http://dx.doi.org/10.1128/aem.03864-13.
Texto completo da fonteAttwood, G. T., W. J. Kelly, E. H. Altermann, C. D. Moon, S. Leahy e A. L. Cookson. "Application of rumen microbial genome information to livestock systems in the postgenomic era". Australian Journal of Experimental Agriculture 48, n.º 7 (2008): 695. http://dx.doi.org/10.1071/ea07408.
Texto completo da fonteSirohi, S. K., Neha Pandey, B. Singh e A. K. Puniya. "Rumen methanogens: a review". Indian Journal of Microbiology 50, n.º 3 (setembro de 2010): 253–62. http://dx.doi.org/10.1007/s12088-010-0061-6.
Texto completo da fonteJoshi, Akshay, Diana Young, Liren Huang, Lona Mosberger, Bernhard Munk, Julia Vinzelj, Veronika Flad et al. "Effect of Growth Media on the Diversity of Neocallimastigomycetes from Non-Rumen Habitats". Microorganisms 10, n.º 10 (5 de outubro de 2022): 1972. http://dx.doi.org/10.3390/microorganisms10101972.
Texto completo da fonteHook, S. E., K. S. Northwood, A. D. G. Wright e B. W. McBride. "Long-Term Monensin Supplementation Does Not Significantly Affect the Quantity or Diversity of Methanogens in the Rumen of the Lactating Dairy Cow". Applied and Environmental Microbiology 75, n.º 2 (21 de novembro de 2008): 374–80. http://dx.doi.org/10.1128/aem.01672-08.
Texto completo da fonteHARMON, BARRY G., CATHY A. BROWN, SUZANA TKALCIC, P. O. E. MUELLER, ANDREW PARKS, ANANT V. JAIN, TONG ZHAO e MICHAEL P. DOYLE. "Fecal Shedding and Rumen Growth of Escherichia coli O157:H7 in Fasted Calves". Journal of Food Protection 62, n.º 6 (1 de junho de 1999): 574–79. http://dx.doi.org/10.4315/0362-028x-62.6.574.
Texto completo da fonteHook, Sarah E., André-Denis G. Wright e Brian W. McBride. "Methanogens: Methane Producers of the Rumen and Mitigation Strategies". Archaea 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/945785.
Texto completo da fonteELLIS, J. L., J. DIJKSTRA, E. KEBREAB, A. BANNINK, N. E. ODONGO, B. W. McBRIDE e J. FRANCE. "Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle". Journal of Agricultural Science 146, n.º 2 (26 de março de 2008): 213–33. http://dx.doi.org/10.1017/s0021859608007752.
Texto completo da fonteGuo, Yanxia, Faiz-ul Hassan, Mengwei Li, Huade Xie, Lijuan Peng, Zhenhua Tang e Chengjian Yang. "Effect of Sodium Nitrate and Cysteamine on In Vitro Ruminal Fermentation, Amino Acid Metabolism and Microbiota in Buffalo". Microorganisms 10, n.º 10 (14 de outubro de 2022): 2038. http://dx.doi.org/10.3390/microorganisms10102038.
Texto completo da fonteWang, Shiqin, Jianmin Chai, Guohong Zhao, Naifeng Zhang, Kai Cui, Yanliang Bi, Tao Ma, Yan Tu e Qiyu Diao. "The Temporal Dynamics of Rumen Microbiota in Early Weaned Lambs". Microorganisms 10, n.º 1 (11 de janeiro de 2022): 144. http://dx.doi.org/10.3390/microorganisms10010144.
Texto completo da fonteLOWE, S. E., M. K. THEODOROU, A. P. J. TRINCI e R. B. HESPELL. "Growth of Anaerobic Rumen Fungi on Defined and Semi-defined Media Lacking Rumen Fluid". Microbiology 131, n.º 9 (1 de setembro de 1985): 2225–29. http://dx.doi.org/10.1099/00221287-131-9-2225.
Texto completo da fonteWANG, HOUFU, PENGFEI LI, XUCHUAN LIU, CHUNYONG ZHANG, QIONGFEN LU, DONGMEI XI, RENHUI YANG et al. "The Composition of Fungal Communities in the Rumen of Gayals (Bos frontalis), Yaks (Bos grunniens), and Yunnan and Tibetan Yellow Cattle (Bos taurs)". Polish Journal of Microbiology 68, n.º 4 (dezembro de 2019): 505–14. http://dx.doi.org/10.33073/pjm-2019-050.
Texto completo da fonteMccann, Joshua C., Tryon A. Wickersham e Juan J. Loor. "High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism". Bioinformatics and Biology Insights 8 (janeiro de 2014): BBI.S15389. http://dx.doi.org/10.4137/bbi.s15389.
Texto completo da fonteRabee, Alaa Emara, Robert Forster e Ebrahim A. Sabra. "Lignocelluloytic activities and composition of bacterial community in the camel rumen". AIMS Microbiology 7, n.º 3 (2021): 354–67. http://dx.doi.org/10.3934/microbiol.2021022.
Texto completo da fonteKrause, D. O., T. G. Nagaraja, A. D. G. Wright e T. R. Callaway. "Board-invited review: Rumen microbiology: Leading the way in microbial ecology1,2". Journal of Animal Science 91, n.º 1 (1 de janeiro de 2013): 331–41. http://dx.doi.org/10.2527/jas.2012-5567.
Texto completo da fonteTokura, Mitsunori, Kazunari Ushida, Kohji Miyazaki e Yoichi Kojima. "Methanogens associated with rumen ciliates". FEMS Microbiology Ecology 22, n.º 2 (17 de janeiro de 2006): 137–43. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00365.x.
Texto completo da fonteWang, Wei-Kang, Wen-Juan Li, Qi-Chao Wu, Yan-Lu Wang, Sheng-Li Li e Hong-Jian Yang. "Isolation and Identification of a Rumen Lactobacillus Bacteria and Its Degradation Potential of Gossypol in Cottonseed Meal during Solid-State Fermentation". Microorganisms 9, n.º 11 (21 de outubro de 2021): 2200. http://dx.doi.org/10.3390/microorganisms9112200.
Texto completo da fonteMuck, Richard. "Recent advances in silage microbiology". Agricultural and Food Science 22, n.º 1 (27 de março de 2013): 3–15. http://dx.doi.org/10.23986/afsci.6718.
Texto completo da fonteQian, Wenxi, ZhiPeng Li, Weiping Ao, Guangyong Zhao, Guangyu Li e JianPing Wu. "Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries)". Canadian Journal of Microbiology 63, n.º 5 (maio de 2017): 375–83. http://dx.doi.org/10.1139/cjm-2016-0596.
Texto completo da fonteLockwood, B. C., G. H. Coombs e A. G. Williams. "Proteinase Activity in Rumen Ciliate Protozoa". Microbiology 134, n.º 9 (1 de setembro de 1988): 2605–14. http://dx.doi.org/10.1099/00221287-134-9-2605.
Texto completo da fonteHao, Yangyi, Yue Gong, Shuai Huang, Shoukun Ji, Wei Wang, Yajing Wang, Hongjian Yang, Zhijun Cao e Shengli Li. "Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle". Microorganisms 9, n.º 8 (23 de agosto de 2021): 1788. http://dx.doi.org/10.3390/microorganisms9081788.
Texto completo da fonteWilliams, A. G. "Rumen holotrich ciliate protozoa." Microbiological Reviews 50, n.º 1 (1986): 25–49. http://dx.doi.org/10.1128/mmbr.50.1.25-49.1986.
Texto completo da fonteWilliams, A. G. "Rumen holotrich ciliate protozoa." Microbiological Reviews 50, n.º 1 (1986): 25–49. http://dx.doi.org/10.1128/mr.50.1.25-49.1986.
Texto completo da fonteMountfort, Douglas O. "The rumen anaerobic fungi". FEMS Microbiology Letters 46, n.º 4 (outubro de 1987): 401–8. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02476.x.
Texto completo da fonteLi, Long-Ping, Ke-Lan Peng, Ming-Yuan Xue, Sen-Lin Zhu, Jian-Xin Liu e Hui-Zeng Sun. "An Age Effect of Rumen Microbiome in Dairy Buffaloes Revealed by Metagenomics". Microorganisms 10, n.º 8 (25 de julho de 2022): 1491. http://dx.doi.org/10.3390/microorganisms10081491.
Texto completo da fonteCHEN, YA-BING, DAO-LIANG LAN, CHENG TANG, XIAO-NONG YANG e JIAN LI. "Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing". Polish Journal of Microbiology 64, n.º 1 (2015): 29–36. http://dx.doi.org/10.33073/pjm-2015-004.
Texto completo da fonteFAN, Y. Y., S. C. RICKE, C. M. SCANLAN, D. J. NISBET, A. A. VARGAS-MOSKOLA, D. E. CORRIER e J. R. DELOACH. "Use of Differential Rumen Fluid-Based Carbohydrate Agar Media for Culturing Lactose-Selected Cecal Bacteria from Chickens". Journal of Food Protection 58, n.º 4 (1 de abril de 1995): 361–67. http://dx.doi.org/10.4315/0362-028x-58.4.361.
Texto completo da fonteMalgwi, Isaac, János Tossenberger, Veronika Halas, György Végvári, Melinda Kovács e Ildikó Jócsák. "PCR and qPCR-based applications in rumen microbiology research: a review". Acta Agraria Kaposváriensis 23, n.º 1 (27 de setembro de 2019). http://dx.doi.org/10.31914/aak.2330.
Texto completo da fontePark, Tansol, Laura M. Cersosimo, Wenli Li, Wendy Radloff e Geoffrey I. Zanton. "Pre-weaning Ruminal Administration of Differentially-Enriched, Rumen-Derived Inocula Shaped Rumen Bacterial Communities and Co-occurrence Networks of Post-weaned Dairy Calves". Frontiers in Microbiology 12 (26 de fevereiro de 2021). http://dx.doi.org/10.3389/fmicb.2021.625488.
Texto completo da fonteLiu, Xiaozhen, Qinmeng Liu, Sihuai Sun, Hengxi Sun, Yao Wang, Xihui Shen e Lei Zhang. "Exploring AI-2-mediated interspecies communications within rumen microbial communities". Microbiome 10, n.º 1 (7 de outubro de 2022). http://dx.doi.org/10.1186/s40168-022-01367-z.
Texto completo da fonteJin, Di, Shengguo Zhao, Pengpeng Wang, Nan Zheng, Dengpan Bu, Yves Beckers e Jiaqi Wang. "Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System". Frontiers in Microbiology 7 (28 de junho de 2016). http://dx.doi.org/10.3389/fmicb.2016.01006.
Texto completo da fonteFan, Qingshan, Metha Wanapat, Tianhai Yan e Fujiang Hou. "Altitude influences microbial diversity and herbage fermentation in the rumen of yaks". BMC Microbiology 20, n.º 1 (dezembro de 2020). http://dx.doi.org/10.1186/s12866-020-02054-5.
Texto completo da fonteGao, Kai, e Chunyin Geng. "Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture". Frontiers in Microbiology 13 (20 de dezembro de 2022). http://dx.doi.org/10.3389/fmicb.2022.908244.
Texto completo da fonteAnderson, Chiron J., Lucas R. Koester e Stephan Schmitz-Esser. "Rumen Epithelial Communities Share a Core Bacterial Microbiota: A Meta-Analysis of 16S rRNA Gene Illumina MiSeq Sequencing Datasets". Frontiers in Microbiology 12 (15 de março de 2021). http://dx.doi.org/10.3389/fmicb.2021.625400.
Texto completo da fonteAltermann, Eric, Kerri Reilly, Wayne Young, Ron S. Ronimus e Stefan Muetzel. "Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions". Frontiers in Microbiology 13 (11 de março de 2022). http://dx.doi.org/10.3389/fmicb.2022.816695.
Texto completo da fonteCui, Xiongxiong, Zhaofeng Wang, Yuhui Tan, Shenghua Chang, Huiru Zheng, Haiying Wang, Tianhai Yan, Tsedan Guru e Fujiang Hou. "Selenium Yeast Dietary Supplement Affects Rumen Bacterial Population Dynamics and Fermentation Parameters of Tibetan Sheep (Ovis aries) in Alpine Meadow". Frontiers in Microbiology 12 (2 de julho de 2021). http://dx.doi.org/10.3389/fmicb.2021.663945.
Texto completo da fonteYin, Xuejiao, Shoukun Ji, Chunhui Duan, Peizhi Tian, Sisi Ju, Hui Yan, Yingjie Zhang e Yueqin Liu. "Age-Related Changes in the Ruminal Microbiota and Their Relationship With Rumen Fermentation in Lambs". Frontiers in Microbiology 12 (20 de setembro de 2021). http://dx.doi.org/10.3389/fmicb.2021.679135.
Texto completo da fonteCheng, Zhiqiang, Zitong Meng, Dejin Tan, Osmond Datsomor, Kang Zhan, Miao Lin e Guoqi Zhao. "Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows". Frontiers in Microbiology 13 (21 de novembro de 2022). http://dx.doi.org/10.3389/fmicb.2022.1053503.
Texto completo da fonteSmith, Paul E., Alan K. Kelly, David A. Kenny e Sinéad M. Waters. "Differences in the Composition of the Rumen Microbiota of Finishing Beef Cattle Divergently Ranked for Residual Methane Emissions". Frontiers in Microbiology 13 (29 de abril de 2022). http://dx.doi.org/10.3389/fmicb.2022.855565.
Texto completo da fonteHuang, Yongliang, Guoxiu Wang, Qian Zhang, Zhanyu Chen, Chong Li, Weimin Wang, Xiaoxue Zhang et al. "Effects of milk replacer feeding level on growth performance, rumen development and the ruminal bacterial community in lambs". Frontiers in Microbiology 13 (10 de janeiro de 2023). http://dx.doi.org/10.3389/fmicb.2022.1069964.
Texto completo da fonte