Artigos de revistas sobre o tema "Room temperature assembly"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Room temperature assembly".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Peng, Lin Fa, Dian Kai Qiu, Pei Yun Yi e Xin Min Lai. "Investigation of Thermal Influence on the Assembly of Polymer Electrolyte Membrane Fuel Cell Stacks". Advanced Materials Research 512-515 (maio de 2012): 1509–14. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1509.
Texto completo da fonteDeng, Yuchen, Peng Li, Jiatong Li, Daolai Sun e Huanrong Li. "Color-Tunable Aqueous Room-Temperature Phosphorescence Supramolecular Assembly". ACS Applied Materials & Interfaces 13, n.º 12 (22 de março de 2021): 14407–16. http://dx.doi.org/10.1021/acsami.1c01174.
Texto completo da fonteChen, Jian, e Wayne A. Weimer. "Room-Temperature Assembly of Directional Carbon Nanotube Strings". Journal of the American Chemical Society 124, n.º 5 (fevereiro de 2002): 758–59. http://dx.doi.org/10.1021/ja017384t.
Texto completo da fonteDubey, V., E. Beyne, J. Derakhshandeh e I. De Wolf. "Physics of self-aligned assembly at room temperature". Physics of Fluids 30, n.º 1 (janeiro de 2018): 012001. http://dx.doi.org/10.1063/1.5004797.
Texto completo da fonteYang, Lu-feng, De-qing Chu, Hui-lou Sun e Ge Ge. "Room temperature synthesis of flower-like CaCO3 architectures". New Journal of Chemistry 40, n.º 1 (2016): 571–77. http://dx.doi.org/10.1039/c5nj02141c.
Texto completo da fonteMatteau, Jacques. "NanoBond® Assembly – A Rapid, Room Temperature Soldering Process". International Symposium on Microelectronics 2011, n.º 1 (1 de janeiro de 2011): 000521–26. http://dx.doi.org/10.4071/isom-2011-wa2-paper5.
Texto completo da fonteToda, Kenji, Hiroki Sato, Akira Sugawara, Saori Tokuoka, Kazuyoshi Uematsu e Mineo Sato. "Self-Assembly of Perovskite Nanosheet Colloid at Room Temperature". Key Engineering Materials 301 (janeiro de 2006): 227–30. http://dx.doi.org/10.4028/www.scientific.net/kem.301.227.
Texto completo da fonteRamanath, G., J. D'Arcy-Gall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar e K. Vijayamohanan. "Templateless Room-Temperature Assembly of Nanowire Networks from Nanoparticles". Langmuir 20, n.º 13 (junho de 2004): 5583–87. http://dx.doi.org/10.1021/la0497649.
Texto completo da fonteHuang, Ling-Yuang, Eric W. Bohannan, Chen-Jen Hung e Jay A. Switzer. "Room-Temperature Electrochemical Assembly of Copper/Cuprous Oxide Nanocomposites". Israel Journal of Chemistry 37, n.º 2-3 (1997): 297–301. http://dx.doi.org/10.1002/ijch.199700034.
Texto completo da fonteLi, Jiazhuo, Ying Wang, Xiaoming Jiang e Peng Wu. "An aqueous room-temperature phosphorescent probe for Gd3+". Chemical Communications 58, n.º 16 (2022): 2686–89. http://dx.doi.org/10.1039/d1cc06229h.
Texto completo da fonteLi, Lei, Zhongyu Lian, Xi Yan, Meng Xia e Mingcui Zhang. "An evaporation induced self-assembly approach to prepare polymorphic carbon dot fluorescent nanoprobes for protein labelling". Chemical Communications 54, n.º 93 (2018): 13123–26. http://dx.doi.org/10.1039/c8cc05860a.
Texto completo da fonteZhao, Wei, Xinyu Song, Zhilei Yin, Chunhua Fan, Guozhu Chen e Sixiu Sun. "Self-assembly of ZnO nanosheets into nanoflowers at room temperature". Materials Research Bulletin 43, n.º 11 (novembro de 2008): 3171–76. http://dx.doi.org/10.1016/j.materresbull.2007.11.013.
Texto completo da fonteBISCHOFF, GERLINDE, ROBERT BISCHOFF e SIEGFRIED HOFFMANN. "Porphyrin self-assembly as template for RNA?" Journal of Porphyrins and Phthalocyanines 05, n.º 09 (setembro de 2001): 691–701. http://dx.doi.org/10.1002/jpp.381.
Texto completo da fonteTang, Jiang, Di Li, Chunyan Sun, Longzhen Zheng e Jinghong Li. "Temperature dependant self-assembly of surfactant Brij 76 in room temperature ionic liquid". Colloids and Surfaces A: Physicochemical and Engineering Aspects 273, n.º 1-3 (fevereiro de 2006): 24–28. http://dx.doi.org/10.1016/j.colsurfa.2005.07.030.
Texto completo da fonteDai, Ziwen, Hoi Man Leung, Qi Gao, Fei Wang, Sze Wing Wong, Ling Sum Liu, Yu Ju Au, King Wai Chiu Lai e Pik Kwan Lo. "Facile construction of a DNA tetrahedron in unconventional ladder-like arrangements at room temperature". Nanoscale Advances 1, n.º 3 (2019): 1240–48. http://dx.doi.org/10.1039/c8na00323h.
Texto completo da fonteChen, Zehua, Ulrich Gengenbach, Xinnan Liu, Alexander Scholz, Lukas Zimmermann, Jasmin Aghassi-Hagmann e Liane Koker. "An Automated Room Temperature Flip-Chip Mounting Process for Hybrid Printed Electronics". Micromachines 13, n.º 4 (8 de abril de 2022): 583. http://dx.doi.org/10.3390/mi13040583.
Texto completo da fonteTanisawa, Hidekazu, Kohei Hiyama, Takeshi Anzai, Hiroki Takahashi, Yoshinori Murakami, Shinji Sato, Kinuyo Watanabe, Fumiki Kato e Hiroshi Sato. "Reliability Assessment of Flip-Chip Assembly of Al Bumps". Journal of Microelectronics and Electronic Packaging 12, n.º 2 (1 de agosto de 2015): 92–97. http://dx.doi.org/10.4071/imaps.459.
Texto completo da fonteTANISAWA, Hidekazu, Kohei HIYAMA, Takeshi ANZAI, Hiroki TAKAHASHI, Yoshinori MURAKAMI, Shinji SATO, Kinuyo WATANABE, Fumiki KATO e Hiroshi SATO. "Reliability Assessment of Flip-chip Assembly of Al Bumps". International Symposium on Microelectronics 2014, n.º 1 (1 de outubro de 2014): 000301–6. http://dx.doi.org/10.4071/isom-tp46.
Texto completo da fonteTao, Yulun, Juchuan Li, Anjian Xie, Shikuo Li, Ping Chen, Liping Ni e Yuhua Shen. "Supramolecular self-assembly of three-dimensional polyaniline and polypyrrole crystals". Chem. Commun. 50, n.º 84 (2014): 12757–60. http://dx.doi.org/10.1039/c4cc05559d.
Texto completo da fonteLosensky, Luisa, Salvatore Chiantia, Gudrun Holland, Michael Laue, Anca Petran, Jürgen Liebscher e Anna Arbuzova. "Self-assembly of a cholesteryl-modified nucleoside into tubular structures from giant unilamellar vesicles". RSC Advances 5, n.º 6 (2015): 4502–10. http://dx.doi.org/10.1039/c4ra11289j.
Texto completo da fonteSamai, Suman, Christos Sapsanis, Sachin P. Patil, Alaa Ezzeddine, Basem A. Moosa, Hesham Omran, Abdul-Hamid Emwas, Khaled N. Salama e Niveen M. Khashab. "A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors". Soft Matter 12, n.º 11 (2016): 2842–45. http://dx.doi.org/10.1039/c6sm00272b.
Texto completo da fonteNanthakumar, S., D. Rajenthirakumar e S. Avinashkumar. "Influence of temperature on deformation behavior of copper during microextrusion process". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, n.º 9 (8 de janeiro de 2020): 1797–808. http://dx.doi.org/10.1177/0954406219899114.
Texto completo da fonteBalogh, Bálint, Péter Gordon, Róbert Kovács, Csaba Nagynémedi, Péter János Szabó e Gábor Harsányi. "Failure Analysis Methods in Electronics Assembly Technology". Materials Science Forum 589 (junho de 2008): 349–54. http://dx.doi.org/10.4028/www.scientific.net/msf.589.349.
Texto completo da fonteLiu, Zhenzhong, Gongjun Zhang, Wei Lu, Youju Huang, Jiawei Zhang e Tao Chen. "UV light-initiated RAFT polymerization induced self-assembly". Polymer Chemistry 6, n.º 34 (2015): 6129–32. http://dx.doi.org/10.1039/c5py00907c.
Texto completo da fonteLuo, Yang-Hui, Qing-Ling Liu, Li-Jing Yang, Yu Sun, Jin-Wen Wang, Chao-Qun You e Bai-Wang Sun. "Magnetic observation of above room-temperature spin transition in vesicular nano-spheres". Journal of Materials Chemistry C 4, n.º 34 (2016): 8061–69. http://dx.doi.org/10.1039/c6tc02796b.
Texto completo da fonteSuzuki, Akira, Munetaka Akita e Michito Yoshizawa. "Amphiphilic tribranched scaffolds with polyaromatic panels that wrap perylene stacks displaying unusual emissions". Chemical Communications 52, n.º 65 (2016): 10024–27. http://dx.doi.org/10.1039/c6cc04823d.
Texto completo da fonteOdunze, Uchechukwu, Fionn O'Brien, Lisa Godfrey, Andreas Schätzlein e Ijeoma Uchegbu. "Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles". Pharmaceutical Nanotechnology 7, n.º 1 (10 de maio de 2019): 57–71. http://dx.doi.org/10.2174/2211738507666190311123401.
Texto completo da fonteAbdelghany, A. M., A. H. Oraby, Awatif A. Hindi, Doaa M. El-Nagar e Fathia S. Alhakami. "Green synthesis of mixed metallic nanoparticles using room temperature self-assembly". JOURNAL OF ADVANCES IN PHYSICS 13, n.º 2 (16 de março de 2017): 4671–77. http://dx.doi.org/10.24297/jap.v13i2.5942.
Texto completo da fonteLu, Lehui, Atsuko Kobayashi, Yasuo Kikkawa, Keiko Tawa e Yukihiro Ozaki. "Oriented Attachment-Based Assembly of Dendritic Silver Nanostructures at Room Temperature". Journal of Physical Chemistry B 110, n.º 46 (novembro de 2006): 23234–41. http://dx.doi.org/10.1021/jp063978c.
Texto completo da fonteFlory, Justin D., Sandip Shinde, Su Lin, Yan Liu, Hao Yan, Giovanna Ghirlanda e Petra Fromme. "PNA-Peptide Assembly in a 3D DNA Nanocage at Room Temperature". Journal of the American Chemical Society 135, n.º 18 (12 de abril de 2013): 6985–93. http://dx.doi.org/10.1021/ja400762c.
Texto completo da fonteSun, Xuping, Yonglan Luo e Junfeng Zhai. "Solution self-assembly-based route towards hexagonal microdisks at room temperature". Inorganic Materials 46, n.º 5 (maio de 2010): 472–75. http://dx.doi.org/10.1134/s0020168510050067.
Texto completo da fonteShimmin, Robert G., Robert Vajtai, Richard W. Siegel e Paul V. Braun. "Room-Temperature Assembly of Germanium Photonic Crystals through Colloidal Crystal Templating". Chemistry of Materials 19, n.º 8 (abril de 2007): 2102–7. http://dx.doi.org/10.1021/cm062893l.
Texto completo da fonteJIA, YAOSHUN, QIANWANG CHEN e MINGZAI WU. "ROOM TEMPERATURE SELF-ASSEMBLY GROWTH OF COBALT NANOWIRES UNDER MAGNETIC FIELDS". International Journal of Modern Physics B 19, n.º 15n17 (10 de julho de 2005): 2728–33. http://dx.doi.org/10.1142/s0217979205031602.
Texto completo da fonteSimmons, T. J., N. Maeda, J. Miao, M. Bravo-Sanchez, J. S. Dordick e R. J. Linhardt. "Self-assembly of carbon nanotube films from room temperature ionic liquids". Carbon 58 (julho de 2013): 226–31. http://dx.doi.org/10.1016/j.carbon.2013.02.062.
Texto completo da fonteYan, Shuang, Gongzheng Zhang, Feibo Li, Li Zhang, Sitong Wang, Huhu Zhao, Qi Ge e Huanjun Li. "Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM2.5 and PM10) capture". Nanoscale 11, n.º 21 (2019): 10372–80. http://dx.doi.org/10.1039/c9nr02071c.
Texto completo da fonteChen, Qiang, Wojciech Zajaczkowski, Johannes Seibel, Steven De Feyter, Wojciech Pisula, Klaus Müllen e Akimitsu Narita. "Synthesis and helical supramolecular organization of discotic liquid crystalline dibenzo[hi,st]ovalene". Journal of Materials Chemistry C 7, n.º 41 (2019): 12898–906. http://dx.doi.org/10.1039/c9tc03350e.
Texto completo da fonteBaviloliaei, Mahdi Sadeghzadeh, e Lars Diekhöner. "Molecular self-assembly at nanometer scale modulated surfaces: trimesic acid on Ag(111), Cu(111) and Ag/Cu(111)". Phys. Chem. Chem. Phys. 16, n.º 23 (2014): 11265–69. http://dx.doi.org/10.1039/c4cp01429d.
Texto completo da fonteOsada, M., e T. Sasaki. "Room-Temperature Ceramic Nanocoating Using Nanosheet Deposition Technique". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1 de setembro de 2013): 000014–18. http://dx.doi.org/10.4071/cicmt-ta14.
Texto completo da fonteTan, Jianbo, Yuhao Bai, Xuechao Zhang e Li Zhang. "Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA)". Polymer Chemistry 7, n.º 13 (2016): 2372–80. http://dx.doi.org/10.1039/c6py00022c.
Texto completo da fonteZhou, Xiang, Dongbao Yao, Wenqiang Hua, Ningdong Huang, Xiaowei Chen, Liangbin Li, Miao He et al. "Programming colloidal bonding using DNA strand-displacement circuitry". Proceedings of the National Academy of Sciences 117, n.º 11 (4 de março de 2020): 5617–23. http://dx.doi.org/10.1073/pnas.1917941117.
Texto completo da fonteTeng, Yue, Le Xin Song, Wei Liu, Juan Xia, Li Zhao, Qing Shan Wang e Mao Mao Ruan. "Creation of hollow microtubular iron oxalate dihydrate induced by a metallo-supramolecular micelle based on the self-assembly of potassium ferrioxalate and sodium dodecyl sulphate". RSC Advances 5, n.º 48 (2015): 38006–10. http://dx.doi.org/10.1039/c5ra01703c.
Texto completo da fonteDe Marchi, F., G. Galeotti, M. Simenas, E. E. Tornau, A. Pezzella, J. MacLeod, M. Ebrahimi e F. Rosei. "Room-temperature surface-assisted reactivity of a melanin precursor: silver metal–organic coordination versus covalent dimerization on gold". Nanoscale 10, n.º 35 (2018): 16721–29. http://dx.doi.org/10.1039/c8nr04002h.
Texto completo da fonteTalley, Michael R., Ryjul W. Stokes, Whitney K. Walker e David J. Michaelis. "Electrophilic activation of alkynes for enyne cycloisomerization reactions with in situ generated early/late heterobimetallic Pt–Ti catalysts". Dalton Transactions 45, n.º 24 (2016): 9770–73. http://dx.doi.org/10.1039/c6dt01783e.
Texto completo da fonteWang, Xiqian, Chenxi Liu, Yuying Jiang, Chiming Wang, Tianyu Wang, Ming Bai e Jianzhuang Jiang. "Room temperature chiral reorganization of interfacial assembly of achiral double-decker phthalocyanine". Physical Chemistry Chemical Physics 20, n.º 10 (2018): 7223–29. http://dx.doi.org/10.1039/c7cp08647d.
Texto completo da fontePhuong, Luong Thi Kim, e An Manh Nguyen. "Epitaxial Growth of High Curie-Temperature Ge1-xMnx quantum dots on Si(001) by auto-assembly". Communications in Physics 24, n.º 1 (23 de março de 2014): 69. http://dx.doi.org/10.15625/0868-3166/24/1/3477.
Texto completo da fonteWang, Kai, Dong Zhi Zhang, Jun Tong e Bo Kai Xia. "Ethanol Gas Sensor Based on Self-Assembled Multi-Walled Carbon Nanotube Film". Applied Mechanics and Materials 241-244 (dezembro de 2012): 881–84. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.881.
Texto completo da fonteFan, Junpeng, Miguel Guerrero, Adrián Carretero-Genevrier, Maria Dolors Baró, Santiago Suriñach, Eva Pellicer e Jordi Sort. "Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO2 thin films with tunable room temperature magnetic properties". Journal of Materials Chemistry C 5, n.º 22 (2017): 5517–27. http://dx.doi.org/10.1039/c7tc01128h.
Texto completo da fonteLuo, Yanqing, Tao Tan, Sen Wang, Ran Pang, Lihong Jiang, Da Li, Jing Feng, Hongjie Zhang, Su Zhang e Chengyu Li. "Multivariant ligands stabilize anionic solvent-oriented α-CsPbX3 nanocrystals at room temperature". Nanoscale 13, n.º 9 (2021): 4899–910. http://dx.doi.org/10.1039/d0nr08697e.
Texto completo da fonteCai, Zhen-Feng, Wei-Long Dong, Ting Chen, Hui-Juan Yan, Dong Wang, Wei Xu e Li-Jun Wan. "Directed assembly of fullerene on modified Au(111) electrodes". Chemical Communications 54, n.º 58 (2018): 8052–55. http://dx.doi.org/10.1039/c8cc04284e.
Texto completo da fonteKojtari, Arben, Patrick J. Carroll e Hai-Feng Ji. "Metal organic framework (MOF) micro/nanopillars". CrystEngComm 16, n.º 14 (2014): 2885–88. http://dx.doi.org/10.1039/c4ce00172a.
Texto completo da fonte