Artigos de revistas sobre o tema "Robots de terrain"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Robots de terrain".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Žák, Marek, Jaroslav Rozman e František V. Zbořil. "Design and Control of 7-DOF Omni-directional Hexapod Robot". Open Computer Science 11, n.º 1 (17 de dezembro de 2020): 80–89. http://dx.doi.org/10.1515/comp-2020-0189.
Texto completo da fonteZHANG, HE, RUI WU, CHANGLE LI, XIZHE ZANG, YANHE ZHU, HONGZHE JIN, XUEHE ZHANG e JIE ZHAO. "ADAPTIVE MOTION PLANNING FOR HITCR-II HEXAPOD ROBOT". Journal of Mechanics in Medicine and Biology 17, n.º 07 (novembro de 2017): 1740040. http://dx.doi.org/10.1142/s0219519417400401.
Texto completo da fonteHao, Qian, Zhaoba Wang, Junzheng Wang e Guangrong Chen. "Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots". Sensors 20, n.º 17 (31 de agosto de 2020): 4911. http://dx.doi.org/10.3390/s20174911.
Texto completo da fonteCruz Ulloa, Christyan, Lourdes Sánchez, Jaime Del Cerro e Antonio Barrientos. "Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation". Biomimetics 8, n.º 3 (3 de julho de 2023): 289. http://dx.doi.org/10.3390/biomimetics8030289.
Texto completo da fonteHashimoto, Kenji, Yusuke Sugahara, Hun-Ok Lim e Atsuo Takanishi. "Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment". Journal of Robotics and Mechatronics 20, n.º 5 (20 de outubro de 2008): 775–84. http://dx.doi.org/10.20965/jrm.2008.p0775.
Texto completo da fonteChen, Yang, Yao Wu, Wei Zeng e Shaoyi Du. "Kinematics Model Estimation of 4W Skid-Steering Mobile Robots Using Visual Terrain Classification". Journal of Robotics 2023 (11 de outubro de 2023): 1–12. http://dx.doi.org/10.1155/2023/1632563.
Texto completo da fontePecie, Robert Florian, Mihai Olimpiu Tătar e Călin Rusu. "Studies on mobile robots for all types of terrain". MATEC Web of Conferences 343 (2021): 08015. http://dx.doi.org/10.1051/matecconf/202134308015.
Texto completo da fonteHuang, Han, Yu Feng, Xiong Yang, Liu Yang e Yajing Shen. "An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability". Micromachines 13, n.º 10 (22 de setembro de 2022): 1578. http://dx.doi.org/10.3390/mi13101578.
Texto completo da fonteLi, Daxian, Wu Wei e Zhiying Qiu. "Combined Reinforcement Learning and CPG Algorithm to Generate Terrain-Adaptive Gait of Hexapod Robots". Actuators 12, n.º 4 (3 de abril de 2023): 157. http://dx.doi.org/10.3390/act12040157.
Texto completo da fonteLi, Xu, Songyuan Zhang, Haitao Zhou, Haibo Feng e Yili Fu. "Locomotion Adaption for Hydraulic Humanoid Wheel-Legged Robots Over Rough Terrains". International Journal of Humanoid Robotics 18, n.º 01 (fevereiro de 2021): 2150001. http://dx.doi.org/10.1142/s0219843621500018.
Texto completo da fonteBenyeogor, Mbadiwe S., Oladayo O. Olakanmi e Sushant Kumar. "Design of Quad-Wheeled Robot for Multi-Terrain Navigation". Scientific Review, n.º 62 (5 de fevereiro de 2020): 14–22. http://dx.doi.org/10.32861/sr.62.14.22.
Texto completo da fonteJia, Yan, Xiao Luo, Baoling Han, Guanhao Liang, Jiaheng Zhao e Yuting Zhao. "Stability Criterion for Dynamic Gaits of Quadruped Robot". Applied Sciences 8, n.º 12 (25 de novembro de 2018): 2381. http://dx.doi.org/10.3390/app8122381.
Texto completo da fonteMamiya, Shotaro, Shigenori Sano e Naoki Uchiyama. "Foot Structure with Divided Flat Soles and Springs for Legged Robots and Experimental Verification". Journal of Robotics and Mechatronics 28, n.º 6 (20 de dezembro de 2016): 799–807. http://dx.doi.org/10.20965/jrm.2016.p0799.
Texto completo da fonteLuneckas, Mindaugas, Tomas Luneckas e Dainius Udris. "Leg placement algorithm for foot impact force minimization". International Journal of Advanced Robotic Systems 15, n.º 1 (1 de janeiro de 2018): 172988141775151. http://dx.doi.org/10.1177/1729881417751512.
Texto completo da fonteBekhti, Mohammed Abdessamad, e Yuichi Kobayashi. "Regressed Terrain Traversability Cost for Autonomous Navigation Based on Image Textures". Applied Sciences 10, n.º 4 (11 de fevereiro de 2020): 1195. http://dx.doi.org/10.3390/app10041195.
Texto completo da fonteXu, He, X. Z. Gao, Yan Xu, Kaifeng Wang, Hongpeng Yu, Zhen Li, Khalil Alipour e Ozoemena Anthony Ani. "Continuous mobility of mobile robots with a special ability for overcoming driving failure on rough terrain". Robotica 35, n.º 10 (31 de agosto de 2016): 2076–96. http://dx.doi.org/10.1017/s0263574716000606.
Texto completo da fonteZong, Chengguo, Zhijian Ji, Junzhi Yu e Haisheng Yu. "An angle-changeable tracked robot with human-robot interaction in unstructured environments". Assembly Automation 40, n.º 4 (17 de abril de 2020): 565–75. http://dx.doi.org/10.1108/aa-11-2018-0231.
Texto completo da fonteConduraru Slatineanu, Alina, Ioan Doroftei e Ionel Conduraru. "Design and Kinematic Aspects of a Hybrid Locomotion Robot". Advanced Materials Research 1036 (outubro de 2014): 764–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.764.
Texto completo da fonteZhuang, Hongchao, Jiaju Wang, Ning Wang, Weihua Li, Nan Li, Bo Li e Lei Dong. "A Review of Foot–Terrain Interaction Mechanics for Heavy-Duty Legged Robots". Applied Sciences 14, n.º 15 (26 de julho de 2024): 6541. http://dx.doi.org/10.3390/app14156541.
Texto completo da fonteZhang, Yilin, Jiayu Zeng, Huimin Sun, Honglin Sun e Kenji Hashimoto. "Dual-Layer Reinforcement Learning for Quadruped Robot Locomotion and Speed Control in Complex Environments". Applied Sciences 14, n.º 19 (26 de setembro de 2024): 8697. http://dx.doi.org/10.3390/app14198697.
Texto completo da fonteLuneckas, Mindaugas, Tomas Luneckas, Jonas Kriaučiūnas, Dainius Udris, Darius Plonis, Robertas Damaševičius e Rytis Maskeliūnas. "Hexapod Robot Gait Switching for Energy Consumption and Cost of Transport Management Using Heuristic Algorithms". Applied Sciences 11, n.º 3 (2 de fevereiro de 2021): 1339. http://dx.doi.org/10.3390/app11031339.
Texto completo da fonteBae, Junseong, Myeongjin Kim, Bongsub Song, Maolin Jin e Dongwon Yun. "Snake Robot with Driving Assistant Mechanism". Applied Sciences 10, n.º 21 (24 de outubro de 2020): 7478. http://dx.doi.org/10.3390/app10217478.
Texto completo da fonteChen, Liuhongxu, Ping Du, Pengfei Zhan e Bo Xie. "Gait Learning for Hexapod Robot Facing Rough Terrain Based on Dueling-DQN Algorithm". International Journal of Computer Science and Information Technology 2, n.º 1 (25 de março de 2024): 408–24. http://dx.doi.org/10.62051/ijcsit.v2n1.44.
Texto completo da fonteŽák, Marek, Jaroslav Rozman e František V. Zbořil. "Energy Efficiency of a Wheeled Bio-Inspired Hexapod Walking Robot in Sloping Terrain". Robotics 12, n.º 2 (15 de março de 2023): 42. http://dx.doi.org/10.3390/robotics12020042.
Texto completo da fonteRanjan, Rahul, Seungjae Lee e Joongeup Kye. "Design of Tactical Multipurpose All–Terrain Mobile Robot". International Journal of Membrane Science and Technology 10, n.º 2 (20 de outubro de 2023): 2224–37. http://dx.doi.org/10.15379/ijmst.v10i2.2799.
Texto completo da fonteZha, Fusheng, Chen Chen, Wei Guo, Penglong Zheng e Junyi Shi. "A free gait controller designed for a heavy load hexapod robot". Advances in Mechanical Engineering 11, n.º 3 (março de 2019): 168781401983836. http://dx.doi.org/10.1177/1687814019838369.
Texto completo da fonteLuneckas, Tomas. "EVALUATING TERRAIN IRREGULARITY BY ROBOT POSTURE / PAVIRŠIAUS NETOLYGUMO VERTINIMAS PAGAL ROBOTO PADĖTĮ". Mokslas - Lietuvos ateitis 3, n.º 1 (22 de agosto de 2011): 96–99. http://dx.doi.org/10.3846/mla.2011.020.
Texto completo da fonteOlivier Akansie, Kouame Yann, Rajashekhar C. Biradar, Karthik Rajendra e Geetha D. Devanagavi. "A terrain data collection sensor box towards a better analysis of terrains conditions". IAES International Journal of Artificial Intelligence (IJ-AI) 13, n.º 4 (1 de dezembro de 2024): 4388. http://dx.doi.org/10.11591/ijai.v13.i4.pp4388-4402.
Texto completo da fonteMrva, Jakub, Martin Stejskal e Jan Faigl. "ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT". Acta Polytechnica CTU Proceedings 2, n.º 2 (31 de dezembro de 2015): 34–39. http://dx.doi.org/10.14311/app.2015.1.0034.
Texto completo da fonteConduraru Slatineanu, Alina, Ioan Doroftei, Ionel Conduraru e Dorin Luca. "Hexapod Locomotion of a Leg-Wheel Hybrid Mobile Robot". Applied Mechanics and Materials 658 (outubro de 2014): 581–86. http://dx.doi.org/10.4028/www.scientific.net/amm.658.581.
Texto completo da fonteZhao, Kai, Mingming Dong e Liang Gu. "A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots". Mathematical Problems in Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/3938502.
Texto completo da fonteBazeille, Stéphane, Jesus Ortiz, Francesco Rovida, Marco Camurri, Anis Meguenani, Darwin G. Caldwell e Claudio Semini. "Active camera stabilization to enhance the vision of agile legged robots". Robotica 35, n.º 4 (17 de novembro de 2015): 942–60. http://dx.doi.org/10.1017/s0263574715000909.
Texto completo da fonteGao, Xin’an, Xiaorong Guan, Yanlong Yang e Jingmin Zhang. "Design and Ground Performance Evaluation of a Multi-Joint Wheel-Track Composite Mobile Robot for Enhanced Terrain Adaptability". Applied Sciences 13, n.º 12 (18 de junho de 2023): 7270. http://dx.doi.org/10.3390/app13127270.
Texto completo da fonteZheng, Qingyuan, Yu Tian, Yang Deng, Xianjin Zhu, Zhang Chen e Bing Liang. "Reinforcement Learning-Based Control of Single-Track Two-Wheeled Robots in Narrow Terrain". Actuators 12, n.º 3 (28 de fevereiro de 2023): 109. http://dx.doi.org/10.3390/act12030109.
Texto completo da fonteZhu, Yaguang, Kailu Luo, Chao Ma, Qiong Liu e Bo Jin. "Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot". Sensors 18, n.º 9 (25 de agosto de 2018): 2808. http://dx.doi.org/10.3390/s18092808.
Texto completo da fonteYang, Kuo, Xinhui Liu, Changyi Liu e Ziwei Wang. "Motion-Control Strategy for a Heavy-Duty Transport Hexapod Robot on Rugged Agricultural Terrains". Agriculture 13, n.º 11 (11 de novembro de 2023): 2131. http://dx.doi.org/10.3390/agriculture13112131.
Texto completo da fonteRafeeq, Mohammed, Siti Fauziah Toha, Salmiah Ahmad, Mohd Asyraf Razib, Ahmad Syahrin Idris e Mohammad Osman Tokhi. "Amphibious Robots Locomotion Strategies in Unstructured Complex Environments: A Review". Platform : A Journal of Engineering 8, n.º 1 (30 de março de 2024): 12. http://dx.doi.org/10.61762/pajevol8iss1art26197.
Texto completo da fonteNakajima, Shuro. "RT-Mover: a rough terrain mobile robot with a simple leg–wheel hybrid mechanism". International Journal of Robotics Research 30, n.º 13 (22 de junho de 2011): 1609–26. http://dx.doi.org/10.1177/0278364911405697.
Texto completo da fonteHuskić, Goran, Sebastian Buck, Matthieu Herrb, Simon Lacroix e Andreas Zell. "High-speed path following control of skid-steered vehicles". International Journal of Robotics Research 38, n.º 9 (julho de 2019): 1124–48. http://dx.doi.org/10.1177/0278364919859634.
Texto completo da fontePookkuttath, Sathian, Raihan Enjikalayil Abdulkader, Mohan Rajesh Elara e Prabakaran Veerajagadheswar. "AI-Enabled Vibrotactile Feedback-Based Condition Monitoring Framework for Outdoor Mobile Robots". Mathematics 11, n.º 18 (5 de setembro de 2023): 3804. http://dx.doi.org/10.3390/math11183804.
Texto completo da fonteSZABARI, MIKULAS, e RADEK KNOFLICEK. "LEGGED ROBOT LOCOMOTION IN RESISTIVE TERRAIN: A COMPARISON OF TWO METHODS". MM Science Journal 2022, n.º 4 (16 de novembro de 2022): 6040–48. http://dx.doi.org/10.17973/mmsj.2022_11_2022047.
Texto completo da fonteDong, Yunlong, Wei Guo, Fusheng Zha, Yizhou Liu, Chen Chen e Lining Sun. "A Vision-Based Two-Stage Framework for Inferring Physical Properties of the Terrain". Applied Sciences 10, n.º 18 (17 de setembro de 2020): 6473. http://dx.doi.org/10.3390/app10186473.
Texto completo da fonteMarín Arciniegas, Jairo José, e Oscar Andrés Vivas Albán. "Design and Construction of a Snake-Like Robot Implementing Rectilinear and Sidewinding Gait Motions". TecnoLógicas 26, n.º 56 (6 de dezembro de 2022): e2412. http://dx.doi.org/10.22430/22565337.2412.
Texto completo da fonteJeon, Haneul, e Donghun Lee. "Explicit Identification of Pointwise Terrain Gradients for Speed Compensation of Four Driving Tracks in Passively Articulated Tracked Mobile Robot". Mathematics 11, n.º 4 (10 de fevereiro de 2023): 905. http://dx.doi.org/10.3390/math11040905.
Texto completo da fonteLi, Yunquan, Yujia Li, Tao Ren, Jiutian Xia, Hao Liu, Changchun Wu, Senyuan Lin e Yonghua Chen. "An Untethered Soft Robotic Dog Standing and Fast Trotting with Jointless and Resilient Soft Legs". Biomimetics 8, n.º 8 (8 de dezembro de 2023): 596. http://dx.doi.org/10.3390/biomimetics8080596.
Texto completo da fonteSokolov, Oleksandr, Aleksander Hosovsky, Vitalii Ivanov e Ivan Pavlenko. "Movement Monitoring System for a Pneumatic Muscle Actuator". Journal of Engineering Sciences 10, n.º 1 (2023): A1—A5. http://dx.doi.org/10.21272/jes.2023.10(1).a1.
Texto completo da fonteYin, Hao, Ruiqi Shi e Jiang Liu. "Structural Design and Control Research of Multi-Segmented Biomimetic Millipede Robot". Biomimetics 9, n.º 5 (11 de maio de 2024): 288. http://dx.doi.org/10.3390/biomimetics9050288.
Texto completo da fonteGoto, Tomoya, e Genya Ishigami. "CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images". Journal of Robotics and Mechatronics 33, n.º 6 (20 de dezembro de 2021): 1294–302. http://dx.doi.org/10.20965/jrm.2021.p1294.
Texto completo da fonteChen, Tianxiang, Yipeng Huangfu, Sutthiphong Srigrarom e Boo Cheong Khoo. "Path Planning and Motion Control of Robot Dog Through Rough Terrain Based on Vision Navigation". Sensors 24, n.º 22 (15 de novembro de 2024): 7306. http://dx.doi.org/10.3390/s24227306.
Texto completo da fonteTakuma, Takashi, e Koh Hosoda. "Terrain Negotiation of a Compliant Biped Robot Driven by Antagonistic Artificial Muscles". Journal of Robotics and Mechatronics 19, n.º 4 (20 de agosto de 2007): 423–28. http://dx.doi.org/10.20965/jrm.2007.p0423.
Texto completo da fonte