Artigos de revistas sobre o tema "Robotics and neuroscience"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Robotics and neuroscience".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Laxane, Rahul. "Neuro-Robotics: Bridging Neuroscience and Robotics". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 04 (5 de abril de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem30166.
Texto completo da fonteFloreano, Dario, Auke Jan Ijspeert e Stefan Schaal. "Robotics and Neuroscience". Current Biology 24, n.º 18 (setembro de 2014): R910—R920. http://dx.doi.org/10.1016/j.cub.2014.07.058.
Texto completo da fonteFerrández, J. M., F. de la Paz e J. de Lope. "Intelligent robotics and neuroscience". Robotics and Autonomous Systems 58, n.º 12 (dezembro de 2010): 1221–22. http://dx.doi.org/10.1016/j.robot.2010.09.001.
Texto completo da fontePham, Martin Do, Amedeo D’Angiulli, Maryam Mehri Dehnavi e Robin Chhabra. "From Brain Models to Robotic Embodied Cognition: How Does Biological Plausibility Inform Neuromorphic Systems?" Brain Sciences 13, n.º 9 (13 de setembro de 2023): 1316. http://dx.doi.org/10.3390/brainsci13091316.
Texto completo da fonteChawla, Suhani. "ADVANCEMENT OF ROBOTICS IN HEALTHCARE". International Journal of Social Science and Economic Research 07, n.º 12 (2022): 3936–52. http://dx.doi.org/10.46609/ijsser.2022.v07i12.006.
Texto completo da fonteBrock, Oliver, e Francisco Valero-Cuevas. "Transferring synergies from neuroscience to robotics". Physics of Life Reviews 17 (julho de 2016): 27–32. http://dx.doi.org/10.1016/j.plrev.2016.05.011.
Texto completo da fonteChaminade, Thierry, e Gordon Cheng. "Social cognitive neuroscience and humanoid robotics". Journal of Physiology-Paris 103, n.º 3-5 (maio de 2009): 286–95. http://dx.doi.org/10.1016/j.jphysparis.2009.08.011.
Texto completo da fonteRonsse, Renaud, Philippe Lefèvre e Rodolphe Sepulchre. "Robotics and neuroscience: A rhythmic interaction". Neural Networks 21, n.º 4 (maio de 2008): 577–83. http://dx.doi.org/10.1016/j.neunet.2008.03.005.
Texto completo da fonteSchaal, Stefan, Yoshihiko Nakamura e Paolo Dario. "Special issue on robotics and neuroscience". Neural Networks 21, n.º 4 (maio de 2008): 551–52. http://dx.doi.org/10.1016/j.neunet.2008.04.002.
Texto completo da fonteDa Costa, Lancelot, Pablo Lanillos, Noor Sajid, Karl Friston e Shujhat Khan. "How Active Inference Could Help Revolutionise Robotics". Entropy 24, n.º 3 (2 de março de 2022): 361. http://dx.doi.org/10.3390/e24030361.
Texto completo da fonteCheng, Gordon, Stefan K. Ehrlich, Mikhail Lebedev e Miguel A. L. Nicolelis. "Neuroengineering challenges of fusing robotics and neuroscience". Science Robotics 5, n.º 49 (9 de dezembro de 2020): eabd1911. http://dx.doi.org/10.1126/scirobotics.abd1911.
Texto completo da fonteMorimoto, Jun, e Mitsuo Kawato. "Creating the brain and interacting with the brain: an integrated approach to understanding the brain". Journal of The Royal Society Interface 12, n.º 104 (março de 2015): 20141250. http://dx.doi.org/10.1098/rsif.2014.1250.
Texto completo da fonteDominey, Peter Ford. "Reciprocity between second-person neuroscience and cognitive robotics". Behavioral and Brain Sciences 36, n.º 4 (25 de julho de 2013): 418–19. http://dx.doi.org/10.1017/s0140525x12001884.
Texto completo da fonteOña, E. D., R. Cano-de la Cuerda, P. Sánchez-Herrera, C. Balaguer e A. Jardón. "A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb". Journal of Healthcare Engineering 2018 (2018): 1–19. http://dx.doi.org/10.1155/2018/9758939.
Texto completo da fonteKawato, Mitsuo, e Kazuyuki Samejima. "Efficient reinforcement learning: computational theories, neuroscience and robotics". Current Opinion in Neurobiology 17, n.º 2 (abril de 2007): 205–12. http://dx.doi.org/10.1016/j.conb.2007.03.004.
Texto completo da fonteJamone, Lorenzo, Emre Ugur, Angelo Cangelosi, Luciano Fadiga, Alexandre Bernardino, Justus Piater e Jose Santos-Victor. "Affordances in Psychology, Neuroscience, and Robotics: A Survey". IEEE Transactions on Cognitive and Developmental Systems 10, n.º 1 (março de 2018): 4–25. http://dx.doi.org/10.1109/tcds.2016.2594134.
Texto completo da fonteNassour, John, Tran Duy Hoa, Payam Atoofi e Fred Hamker. "Concrete Action Representation Model: From Neuroscience to Robotics". IEEE Transactions on Cognitive and Developmental Systems 12, n.º 2 (junho de 2020): 272–84. http://dx.doi.org/10.1109/tcds.2019.2896300.
Texto completo da fonteEkambaram, Rajasekaran, Meenal Rajasekaran e Devprakash Rajasekaran. "Preservation of Human Essence: A Technological Evolution of Identity". International Journal of Multidisciplinary Research and Growth Evaluation 6, n.º 1 (2025): 1138–44. https://doi.org/10.54660/.ijmrge.2025.6.1.1138-1144.
Texto completo da fonteCross, Emily S., Ruud Hortensius e Agnieszka Wykowska. "From social brains to social robots: applying neurocognitive insights to human–robot interaction". Philosophical Transactions of the Royal Society B: Biological Sciences 374, n.º 1771 (11 de março de 2019): 20180024. http://dx.doi.org/10.1098/rstb.2018.0024.
Texto completo da fonteAzevedo, Christine, Bernard Espiau, Bernard Amblard e Christine Assaiante. "Bipedal locomotion: toward unified concepts in robotics and neuroscience". Biological Cybernetics 96, n.º 2 (21 de novembro de 2006): 209–28. http://dx.doi.org/10.1007/s00422-006-0118-0.
Texto completo da fonteLiu, Sichao, Lihui Wang e Robert X. Gao. "Cognitive neuroscience and robotics: Advancements and future research directions". Robotics and Computer-Integrated Manufacturing 85 (fevereiro de 2024): 102610. http://dx.doi.org/10.1016/j.rcim.2023.102610.
Texto completo da fonteJones, Alexander, Vaibhav Gandhi, Adam Y. Mahiddine e Christian Huyck. "Bridging Neuroscience and Robotics: Spiking Neural Networks in Action". Sensors 23, n.º 21 (1 de novembro de 2023): 8880. http://dx.doi.org/10.3390/s23218880.
Texto completo da fonteIjspeert, Auke J. "Amphibious and Sprawling Locomotion: From Biology to Robotics and Back". Annual Review of Control, Robotics, and Autonomous Systems 3, n.º 1 (3 de maio de 2020): 173–93. http://dx.doi.org/10.1146/annurev-control-091919-095731.
Texto completo da fontePepperberg, Irene M. "The conundrum of correlation and causation". Behavioral and Brain Sciences 24, n.º 6 (dezembro de 2001): 1073–74. http://dx.doi.org/10.1017/s0140525x01460122.
Texto completo da fonteHellström, Thomas. "The relevance of causation in robotics: A review, categorization, and analysis". Paladyn, Journal of Behavioral Robotics 12, n.º 1 (1 de janeiro de 2021): 238–55. http://dx.doi.org/10.1515/pjbr-2021-0017.
Texto completo da fonteBerthouze, Luc, e Giorgio Metta. "Epigenetic robotics: modelling cognitive development in robotic systems". Cognitive Systems Research 6, n.º 3 (setembro de 2005): 189–92. http://dx.doi.org/10.1016/j.cogsys.2004.11.002.
Texto completo da fonteTakahashi, Hideyuki, e Hisashi Ishihara. "Social-neuro robotics as a Method for Social Cognitive Neuroscience". Journal of the Robotics Society of Japan 31, n.º 9 (2013): 840–43. http://dx.doi.org/10.7210/jrsj.31.840.
Texto completo da fonteRucci, Michele, Daniel Bullock e Fabrizio Santini. "Integrating robotics and neuroscience: brains for robots, bodies for brains". Advanced Robotics 21, n.º 10 (janeiro de 2007): 1115–29. http://dx.doi.org/10.1163/156855307781389428.
Texto completo da fontePizzino, Carlos Alexandre Pontes, Ramon Romankevicius Costa, Daniel Mitchell e Patrícia Amâncio Vargas. "NeoSLAM: Long-Term SLAM Using Computational Models of the Brain". Sensors 24, n.º 4 (9 de fevereiro de 2024): 1143. http://dx.doi.org/10.3390/s24041143.
Texto completo da fonteDuchon, Andrew P., Leslie Pack Kaelbling e William H. Warren. "Ecological Robotics". Adaptive Behavior 6, n.º 3-4 (janeiro de 1998): 473–507. http://dx.doi.org/10.1177/105971239800600306.
Texto completo da fonteDodig-Crnkovic, G. "Natural morphological computation as foundation of learning to learn in humans, other living organisms, and intelligent machines". Philosophical Problems of Information Technologies and Cyberspace, n.º 1 (14 de julho de 2021): 4–34. http://dx.doi.org/10.17726/philit.2021.1.1.
Texto completo da fonteDodig-Crnkovic, Gordana. "Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines". Philosophies 5, n.º 3 (1 de setembro de 2020): 17. http://dx.doi.org/10.3390/philosophies5030017.
Texto completo da fonteBlanke, Olaf. "Brain stimulation and neuroscience robotics for induction and assessment of hallucinations". Brain Stimulation 16, n.º 1 (janeiro de 2023): 119. http://dx.doi.org/10.1016/j.brs.2023.01.019.
Texto completo da fonteLiu, Rongrong, Florent Nageotte, Philippe Zanne, Michel de Mathelin e Birgitta Dresp-Langley. "Wearable Wireless Biosensors for Spatiotemporal Grip Force Profiling in Real Time". Engineering Proceedings 2, n.º 1 (14 de novembro de 2020): 45. http://dx.doi.org/10.3390/ecsa-7-08252.
Texto completo da fonteHerrera Pérez, Carlos, María Guadalupe Sánchez-Escribano e Ricardo Sanz. "The morphofunctional approach to emotion modelling in robotics". Adaptive Behavior 20, n.º 5 (16 de julho de 2012): 388–404. http://dx.doi.org/10.1177/1059712312451604.
Texto completo da fonteDe Jaegher, Hanne, Ezequiel Di Paolo e Ralph Adolphs. "What does the interactive brain hypothesis mean for social neuroscience? A dialogue". Philosophical Transactions of the Royal Society B: Biological Sciences 371, n.º 1693 (5 de maio de 2016): 20150379. http://dx.doi.org/10.1098/rstb.2015.0379.
Texto completo da fonteXu, Bo, Huaqing Min e Fangxiong Xiao. "A brief overview of evolutionary developmental robotics". Industrial Robot: An International Journal 41, n.º 6 (20 de outubro de 2014): 527–33. http://dx.doi.org/10.1108/ir-04-2014-0324.
Texto completo da fonteGupta, Nalina, e Kavitha Raja. "Rehabilitation robotics in India". Journal of Neurosciences in Rural Practice 02, n.º 02 (julho de 2011): 207–9. http://dx.doi.org/10.4103/0976-3147.83604.
Texto completo da fontevan der Smagt, Patrick, Markus Grebenstein, Holger Urbanek, Nadine Fligge, Michael Strohmayr, Georg Stillfried, Jonathon Parrish e Agneta Gustus. "Robotics of human movements". Journal of Physiology-Paris 103, n.º 3-5 (maio de 2009): 119–32. http://dx.doi.org/10.1016/j.jphysparis.2009.07.009.
Texto completo da fonteSakamoto, Kazuhiro, Hiroaki Wagatsuma e Kaori Tachibana. "Seven Years of the Workshop for Synergetics between Neuroscience, Rehabilitation and Robotics". Brain & Neural Networks 23, n.º 4 (2016): 169–75. http://dx.doi.org/10.3902/jnns.23.169.
Texto completo da fonted'Avella, Andrea. "Integration of robotics and neuroscience beyond the hand: What kind of synergies?" Physics of Life Reviews 17 (julho de 2016): 33–35. http://dx.doi.org/10.1016/j.plrev.2016.04.001.
Texto completo da fontePransky, Joanne. "The Pransky interview: Dr Maja Matarić, Professor, University of Southern California; Pioneer, field of socially assistive robotics; co-founder of Embodied". Industrial Robot: the international journal of robotics research and application 46, n.º 3 (20 de maio de 2019): 332–36. http://dx.doi.org/10.1108/ir-04-2019-0069.
Texto completo da fonteAnil Meera, Ajith, e Martijn Wisse. "Dynamic Expectation Maximization Algorithm for Estimation of Linear Systems with Colored Noise". Entropy 23, n.º 10 (5 de outubro de 2021): 1306. http://dx.doi.org/10.3390/e23101306.
Texto completo da fonteWu, Jiajun. "Learning to See the Physical World". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15460. http://dx.doi.org/10.1609/aaai.v37i13.26827.
Texto completo da fonteCliff, Dave, Phil Husbands e Inman Harvey. "Explorations in Evolutionary Robotics". Adaptive Behavior 2, n.º 1 (junho de 1993): 73–110. http://dx.doi.org/10.1177/105971239300200104.
Texto completo da fonteClark, Andy, e Rick Grush. "Towards a Cognitive Robotics". Adaptive Behavior 7, n.º 1 (janeiro de 1999): 5–16. http://dx.doi.org/10.1177/105971239900700101.
Texto completo da fonteRogatkin, Dmitry A., Dmitry A. Kulikov e Aleksandra L. Ivlieva. "Three Views on Current Data of Neuroscience for the Purposes of Intelligent Robotics". Modeling of Artificial Intelligence 6, n.º 2 (15 de junho de 2015): 98–136. http://dx.doi.org/10.13187/mai.2015.6.98.
Texto completo da fonteMohan, Vishwanathan, Ajaz Bhat e Pietro Morasso. "Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics". Physics of Life Reviews 30 (outubro de 2019): 89–111. http://dx.doi.org/10.1016/j.plrev.2018.04.005.
Texto completo da fonteKodandaramaiah, Suhasa B., Edward S. Boyden e Craig R. Forest. "In vivo robotics: the automation of neuroscience and other intact‐system biological fields". Annals of the New York Academy of Sciences 1305, n.º 1 (10 de julho de 2013): 63–71. http://dx.doi.org/10.1111/nyas.12171.
Texto completo da fonteHooijmans, Marti, e Fred Keijzer. "Robotics, biological grounding and the Fregean tradition". Mechanicism and Autonomy: What Can Robotics Teach Us About Human Cognition and Action? 15, n.º 3 (13 de dezembro de 2007): 515–46. http://dx.doi.org/10.1075/pc.15.3.08hoo.
Texto completo da fonte