Siga este link para ver outros tipos de publicações sobre o tema: RNA.

Artigos de revistas sobre o tema "RNA"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "RNA".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

OHNO, Hirohisa, e Hirohide SAITO. "RNA/RNP Nanotechnology for Biological Applications". Seibutsu Butsuri 56, n.º 1 (2016): 023–26. http://dx.doi.org/10.2142/biophys.56.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

SHIROGUCHI, Katsuyuki. "RNA Sequencing". Seibutsu Butsuri 53, n.º 6 (2013): 290–94. http://dx.doi.org/10.2142/biophys.53.290.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Shi, Rui-Zhu, Yuan-Qing Pan e Li Xing. "RNA Helicase A Regulates the Replication of RNA Viruses". Viruses 13, n.º 3 (25 de fevereiro de 2021): 361. http://dx.doi.org/10.3390/v13030361.

Texto completo da fonte
Resumo:
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Afonin, Kirill A., Mathias Viard, Ioannis Kagiampakis, Christopher L. Case, Marina A. Dobrovolskaia, Jen Hofmann, Ashlee Vrzak et al. "Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles". ACS Nano 9, n.º 1 (18 de dezembro de 2014): 251–59. http://dx.doi.org/10.1021/nn504508s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kim, Hyunjong, e Juhee Ryu. "Mechanism of Circular RNAs and Their Potential as Novel Therapeutic Agents in Retinal Vascular Diseases". Yakhak Hoeji 67, n.º 6 (31 de dezembro de 2023): 325–34. http://dx.doi.org/10.17480/psk.2023.67.6.325.

Texto completo da fonte
Resumo:
Maintaining and preserving visual function became critical in this aging society. The number of patients with retinal vascular disease such as retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy is gradually increasing due to increased life expectancy, advancements in the technology of delivering premature babies, and complications due to eating habits. To treat these retinal vascular diseases, surgical intervention such as laser photocoagulation and anti-vascular endothelial growth factor (VEGF) drugs can be considered. However, these treatment options are accompanied by various complications and adverse effects. Thus, new treatments focusing on the pathogenesis of retinal vascular disease need to be developed. Various evidences suggest that circular RNA is involved in the pathogenesis of retinal disease. In this article, we discuss about currently used treatments of retinal vascular diseases and the emerging role of circular RNAs in the pathogenesis of retinal vascular diseases. Therefore, understanding the mechanism of circular RNA regulating retinal disease and developing therapeutics using these circular RNAs may offer novel treatment options to cure retinal vascular disease.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rajkowitsch, Lukas, Doris Chen, Sabine Stampfl, Katharina Semrad, Christina Waldsich, Oliver Mayer, Michael F. Jantsch, Robert Konrat, Udo Bläsi e Renée Schroeder. "RNA Chaperones, RNA Annealers and RNA Helicases". RNA Biology 4, n.º 3 (julho de 2007): 118–30. http://dx.doi.org/10.4161/rna.4.3.5445.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sengoku, T., O. Nureki e S. Yokoyama. "Structural basis for RNA translocation by RNA helicase". Seibutsu Butsuri 43, supplement (2003): S98. http://dx.doi.org/10.2142/biophys.43.s98_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tang, Lin. "Mapping RNA–RNA interactions". Nature Methods 17, n.º 8 (31 de julho de 2020): 760. http://dx.doi.org/10.1038/s41592-020-0922-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ligoxygakis, P. "RNA that synthesizes RNA". Trends in Genetics 17, n.º 7 (1 de julho de 2001): 380. http://dx.doi.org/10.1016/s0168-9525(01)02391-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ogasawara, Shinzi, e Ai Yamada. "RNA Editing with Viral RNA-Dependent RNA Polymerase". ACS Synthetic Biology 11, n.º 1 (3 de janeiro de 2022): 46–52. http://dx.doi.org/10.1021/acssynbio.1c00332.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ahlquist, P. "RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing". Science 296, n.º 5571 (17 de maio de 2002): 1270–73. http://dx.doi.org/10.1126/science.1069132.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Arnott, Struther, R. Chandrasekaran, R. P. Millane e H. S. Park. "RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism". Biophysical Journal 49, n.º 1 (janeiro de 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Yano, A., e K. Harada. "2P142 Inhibition of RNA-protein interaction by RNA-RNA interaction". Seibutsu Butsuri 45, supplement (2005): S155. http://dx.doi.org/10.2142/biophys.45.s155_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Taylor, J. P. "RNA That Gets RAN in Neurodegeneration". Science 339, n.º 6125 (14 de março de 2013): 1282–83. http://dx.doi.org/10.1126/science.1236450.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Stackebrandt, Erko, Werner Liesack e Dagmar Witt. "Ribosomal RNA and rDNA sequence analyses". Gene 115, n.º 1-2 (junho de 1992): 255–60. http://dx.doi.org/10.1016/0378-1119(92)90567-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Zhang, X., D. Wu, L. Chen, X. Li, J. Yang, D. Fan, T. Dong et al. "RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction". RNA 20, n.º 7 (6 de maio de 2014): 989–93. http://dx.doi.org/10.1261/rna.044776.114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Alkan, Can, Emre Karakoç, Joseph H. Nadeau, S. Cenk Sahinalp e Kaizhong Zhang. "RNA–RNA Interaction Prediction and Antisense RNA Target Search". Journal of Computational Biology 13, n.º 2 (março de 2006): 267–82. http://dx.doi.org/10.1089/cmb.2006.13.267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Newburn, Laura R., e K. Andrew White. "Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses". Viruses 11, n.º 8 (14 de agosto de 2019): 751. http://dx.doi.org/10.3390/v11080751.

Texto completo da fonte
Resumo:
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Cazenave, C., e O. C. Uhlenbeck. "RNA template-directed RNA synthesis by T7 RNA polymerase." Proceedings of the National Academy of Sciences 91, n.º 15 (19 de julho de 1994): 6972–76. http://dx.doi.org/10.1073/pnas.91.15.6972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

McGinness, Kathleen E., e Gerald F. Joyce. "RNA-Catalyzed RNA Ligation on an External RNA Template". Chemistry & Biology 9, n.º 3 (março de 2002): 297–307. http://dx.doi.org/10.1016/s1074-5521(02)00110-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Predki, Paul F., L. Mike Nayak, Morris B. C. Gottlieb e Lynne Regan. "Dissecting RNA-protein interactions: RNA-RNA recognition by Rop". Cell 80, n.º 1 (janeiro de 1995): 41–50. http://dx.doi.org/10.1016/0092-8674(95)90449-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Günzl, Arthur, Thomas Bruderer, Gabriele Laufer, Bernd Schimanski, Lan-Chun Tu, Hui-Min Chung, Pei-Tseng Lee e Mary Gwo-Shu Lee. "RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei". Eukaryotic Cell 2, n.º 3 (junho de 2003): 542–51. http://dx.doi.org/10.1128/ec.2.3.542-551.2003.

Texto completo da fonte
Resumo:
ABSTRACT In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

HONDA, Tomoyuki, e Keizo TOMONAGA. "Possible roles of endogenous RNA virus elements in RNA virus infection". Uirusu 66, n.º 1 (2016): 39–46. http://dx.doi.org/10.2222/jsv.66.39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Xue, Yuanchao. "Architecture of RNA–RNA interactions". Current Opinion in Genetics & Development 72 (fevereiro de 2022): 138–44. http://dx.doi.org/10.1016/j.gde.2021.11.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Röthlisberger, Pascal, Christian Berk e Jonathan Hall. "RNA Chemistry for RNA Biology". CHIMIA International Journal for Chemistry 73, n.º 5 (29 de maio de 2019): 368–73. http://dx.doi.org/10.2533/chimia.2019.368.

Texto completo da fonte
Resumo:
Advances in the chemical synthesis of RNA have opened new possibilities to address current questions in RNA biology. Access to site-specifically modified oligoribonucleotides is often a pre-requisite for RNA chemical-biology projects. Driven by the enormous research efforts for development of oligonucleotide therapeutics, a wide range of chemical modifications have been developed to modulate the intrinsic properties of nucleic acids in order to fit their use as therapeutics or research tools. The RNA synthesis platform, supported by the NCCR RNA & Disease, aims to provide access to a large variety of chemically modified nucleic acids. In this review, we describe some of the recent projects that involved work of the platform and highlight how RNA chemistry supports new discoveries in RNA biology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

GUTHRIE, CHRISTINE. "Catalytic RNA and RNA Splicing". American Zoologist 29, n.º 2 (maio de 1989): 557–67. http://dx.doi.org/10.1093/icb/29.2.557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Fu, Xiang-Dong. "RNA helicases regulate RNA condensates". Cell Research 30, n.º 4 (9 de março de 2020): 281–82. http://dx.doi.org/10.1038/s41422-020-0296-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Newman, Andy. "RNA enzymes for RNA splicing". Nature 413, n.º 6857 (outubro de 2001): 695–96. http://dx.doi.org/10.1038/35099665.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Abe, Hiroshi. "Nanostructured RNA for RNA Intereference". YAKUGAKU ZASSHI 133, n.º 3 (1 de março de 2013): 373–78. http://dx.doi.org/10.1248/yakushi.12-00239-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Khemici, Vanessa, e Patrick Linder. "RNA helicases in RNA decay". Biochemical Society Transactions 46, n.º 1 (19 de janeiro de 2018): 163–72. http://dx.doi.org/10.1042/bst20170052.

Texto completo da fonte
Resumo:
RNA molecules have the tendency to fold into complex structures or to associate with complementary RNAs that exoribonucleases have difficulties processing or degrading. Therefore, degradosomes in bacteria and organelles as well as exosomes in eukaryotes have teamed-up with RNA helicases. Whereas bacterial degradosomes are associated with RNA helicases from the DEAD-box family, the exosomes and mitochondrial degradosome use the help of Ski2-like and Suv3 RNA helicases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Meyer, Irmtraud M. "Predicting novel RNA–RNA interactions". Current Opinion in Structural Biology 18, n.º 3 (junho de 2008): 387–93. http://dx.doi.org/10.1016/j.sbi.2008.03.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Westhof, Eric, Benoît Masquida e Luc Jaeger. "RNA tectonics: towards RNA design". Folding and Design 1, n.º 4 (agosto de 1996): R78—R88. http://dx.doi.org/10.1016/s1359-0278(96)00037-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Peng, LiNa, YuJiao Li, Lan Zhang e WenQiang Yu. "Moving RNA moves RNA forward". Science China Life Sciences 56, n.º 10 (5 de setembro de 2013): 914–20. http://dx.doi.org/10.1007/s11427-013-4545-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Li, Thomas J. X., e Christian M. Reidys. "Combinatorics of RNA–RNA interaction". Journal of Mathematical Biology 64, n.º 3 (4 de maio de 2011): 529–56. http://dx.doi.org/10.1007/s00285-011-0423-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler e I. L. Hofacker. "Thermodynamics of RNA-RNA binding". Bioinformatics 22, n.º 10 (29 de janeiro de 2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

SCHMIDT, FRANCIS J., BONGRAE CHO e HUGH B. NICHOLAS. "RNA Libraries and RNA Recognitiona". Annals of the New York Academy of Sciences 782, n.º 1 (maio de 1996): 526–33. http://dx.doi.org/10.1111/j.1749-6632.1996.tb40590.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Menzel, Peter, Stefan E. Seemann e Jan Gorodkin. "RILogo: visualizing RNA–RNA interactions". Bioinformatics 28, n.º 19 (23 de julho de 2012): 2523–26. http://dx.doi.org/10.1093/bioinformatics/bts461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Kok, Chee Choy, e Peter C. McMinn. "Picornavirus RNA-dependent RNA polymerase". International Journal of Biochemistry & Cell Biology 41, n.º 3 (março de 2009): 498–502. http://dx.doi.org/10.1016/j.biocel.2008.03.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hammond, T. M., e N. P. Keller. "RNA Silencing inAspergillus nidulansIs Independent of RNA-Dependent RNA Polymerases". Genetics 169, n.º 2 (15 de novembro de 2004): 607–17. http://dx.doi.org/10.1534/genetics.104.035964.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Skeparnias, Ilias, e Jinwei Zhang. "Cooperativity and Interdependency between RNA Structure and RNA–RNA Interactions". Non-Coding RNA 7, n.º 4 (15 de dezembro de 2021): 81. http://dx.doi.org/10.3390/ncrna7040081.

Texto completo da fonte
Resumo:
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Snider, Daltry L., e Stacy M. Horner. "RNA modification of an RNA modifier prevents self-RNA sensing". PLOS Biology 19, n.º 7 (30 de julho de 2021): e3001342. http://dx.doi.org/10.1371/journal.pbio.3001342.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Koh, Hye Ran, Li Xing, Lawrence Kleiman e Sua Myong. "Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing". Nucleic Acids Research 42, n.º 13 (9 de junho de 2014): 8556–64. http://dx.doi.org/10.1093/nar/gku523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Shioda, Norifumi. "RNA toxicity and RAN translation in repeat expansion disorders". Folia Pharmacologica Japonica 150, n.º 3 (2017): 165. http://dx.doi.org/10.1254/fpj.150.165.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

KIKUCHI, Yo. "Current RNA World". Journal of the Japan Veterinary Medical Association 52, n.º 1 (1999): 1–5. http://dx.doi.org/10.12935/jvma1951.52.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

付, 洪. "Multifunction of LncRNA RMRP RNA". Biophysics 08, n.º 02 (2020): 19–27. http://dx.doi.org/10.12677/biphy.2020.82002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Turner, Richard. "RNA". Nature 418, n.º 6894 (julho de 2002): 213. http://dx.doi.org/10.1038/418213a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Darnell, James E. "RNA". Scientific American 253, n.º 4 (outubro de 1985): 68–78. http://dx.doi.org/10.1038/scientificamerican1085-68.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Karbstein, Katrin, e Jennifer A. Doudna. "RNA". Chemistry & Biology 11, n.º 2 (fevereiro de 2004): 149–51. http://dx.doi.org/10.1016/j.chembiol.2004.02.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nybo, Kristie. "RNA Methods: RNA Extraction from Plasma". BioTechniques 47, n.º 4 (outubro de 2009): 821–23. http://dx.doi.org/10.2144/000113235.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Rabhi, Makhlouf, Roman Tuma e Marc Boudvillain. "RNA remodeling by hexameric RNA helicases". RNA Biology 7, n.º 6 (novembro de 2010): 655–66. http://dx.doi.org/10.4161/rna.7.6.13570.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia