Artigos de revistas sobre o tema "RF robustness"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "RF robustness".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Elyousseph, Hilal, e Majid Altamimi. "Robustness of Deep-Learning-Based RF UAV Detectors". Sensors 24, n.º 22 (17 de novembro de 2024): 7339. http://dx.doi.org/10.3390/s24227339.
Texto completo da fonteBollmeyer, Christian, Mathias Pelka, Hartmut Gehring e Horst Hellbrück. "Wireless medical sensors – context, robustness and safety". Current Directions in Biomedical Engineering 1, n.º 1 (1 de setembro de 2015): 349–52. http://dx.doi.org/10.1515/cdbme-2015-0086.
Texto completo da fontePalego, C., Jie Deng, Zhen Peng, S. Halder, J. C. M. Hwang, D. I. Forehand, D. Scarbrough et al. "Robustness of RF MEMS Capacitive Switches With Molybdenum Membranes". IEEE Transactions on Microwave Theory and Techniques 57, n.º 12 (dezembro de 2009): 3262–69. http://dx.doi.org/10.1109/tmtt.2009.2033885.
Texto completo da fonteNguyen, Ngoc-Kim-Khanh, Quang Nguyen, Hai-Ha Pham, Thi-Trang Le, Tuan-Minh Nguyen, Davide Cassi, Francesco Scotognella, Roberto Alfierif e Michele Bellingeri. "Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model". Complexity 2022 (9 de novembro de 2022): 1–16. http://dx.doi.org/10.1155/2022/3616163.
Texto completo da fonteAyaz Atalan, Yasemin, e Abdulkadir Atalan. "Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance". Applied Sciences 15, n.º 1 (30 de dezembro de 2024): 241. https://doi.org/10.3390/app15010241.
Texto completo da fonteKheir, Mohamed, Heinz Kreft, Iris Hölken e Reinhard Knöchel. "On the physical robustness of RF on-chip nanostructured security". Journal of Information Security and Applications 19, n.º 4-5 (novembro de 2014): 301–7. http://dx.doi.org/10.1016/j.jisa.2014.09.007.
Texto completo da fonteLiu, Alan, Yu-Tai Lin e Karthikeyan Sundaresan. "View-agnostic Human Exercise Cataloging with Single MmWave Radar". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, n.º 3 (22 de agosto de 2024): 1–23. http://dx.doi.org/10.1145/3678512.
Texto completo da fonteSanogo, Lamoussa, Eric Alata, Alexandru Takacs e Daniela Dragomirescu. "Intrusion Detection System for IoT: Analysis of PSD Robustness". Sensors 23, n.º 4 (20 de fevereiro de 2023): 2353. http://dx.doi.org/10.3390/s23042353.
Texto completo da fonteSaha, Sunil, Anik Saha, Tusar Kanti Hembram, Biswajeet Pradhan e Abdullah M. Alamri. "Evaluating the Performance of Individual and Novel Ensemble of Machine Learning and Statistical Models for Landslide Susceptibility Assessment at Rudraprayag District of Garhwal Himalaya". Applied Sciences 10, n.º 11 (29 de maio de 2020): 3772. http://dx.doi.org/10.3390/app10113772.
Texto completo da fonteOuyang, Hui, Weibo Li, Feng Gao, Kangzheng Huang e Peng Xiao. "Research on Fault Diagnosis of Ship Diesel Generator System Based on IVY-RF". Energies 17, n.º 22 (20 de novembro de 2024): 5799. http://dx.doi.org/10.3390/en17225799.
Texto completo da fonteSong, Bingkun, Wenxuan Fan e Shuo Zhang. "Research on an Integrated Intelligent Classification Algorithm Based on K-Means PCA-RF Machine Learning". Highlights in Science, Engineering and Technology 49 (21 de maio de 2023): 20–29. http://dx.doi.org/10.54097/hset.v49i.8398.
Texto completo da fonteSIMIN, G., J. WANG, B. KHAN, J. YANG, A. SATTU, R. GASKA e M. SHUR. "NOVEL APPROACHES TO MICROWAVE SWITCHING DEVICES USING NITRIDE TECHNOLOGY". International Journal of High Speed Electronics and Systems 20, n.º 01 (março de 2011): 219–27. http://dx.doi.org/10.1142/s0129156411006556.
Texto completo da fonteMo, Haifeng, Yaohui Zhang e Helun Song. "Improving Linearity and Robustness of RF LDMOS by Mitigating Quasi-Saturation Effect". Active and Passive Electronic Components 2019 (14 de julho de 2019): 1–7. http://dx.doi.org/10.1155/2019/8425198.
Texto completo da fonteLiu, Yuanyuan, Jingying Chen, Cunjie Shan, Zhiming Su e Pei Cai. "A Hierarchical Regression Approach for Unconstrained Face Analysis". International Journal of Pattern Recognition and Artificial Intelligence 29, n.º 08 (22 de novembro de 2015): 1556011. http://dx.doi.org/10.1142/s021800141556011x.
Texto completo da fonteHashemi, Seyed Mohammad, Ruxandra Mihaela Botez e Georges Ghazi. "Robust Trajectory Prediction Using Random Forest Methodology Application to UAS-S4 Ehécatl". Aerospace 11, n.º 1 (2 de janeiro de 2024): 49. http://dx.doi.org/10.3390/aerospace11010049.
Texto completo da fonteMesadri, Conrado K., Aziz Doukkali, Philippe Descamps e Christophe Kelma. "A new methodology for optimal RF DFT sensor design". International Journal of Microwave and Wireless Technologies 4, n.º 5 (3 de julho de 2012): 515–21. http://dx.doi.org/10.1017/s1759078712000499.
Texto completo da fonteMori, Takeshi, Yuta Ogawa, Izuki Endo, Keiichiro Matsushima e Jun Noda. "Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups". Life 13, n.º 11 (9 de novembro de 2023): 2185. http://dx.doi.org/10.3390/life13112185.
Texto completo da fonteXu, Zihan, Fei Zhao, Pingping Lu, Yao Gao, Tingyu Meng, Yanan Dang, Mofei Li e Robert Wang. "A Robust Digital Elevation Model-Based Registration Method for Mini-RF/Mini-SAR Images". Remote Sensing 17, n.º 4 (11 de fevereiro de 2025): 613. https://doi.org/10.3390/rs17040613.
Texto completo da fonteSewpaul, Ronel, Olushina Olawale Awe, Dennis Makafui Dogbey, Machoene Derrick Sekgala e Natisha Dukhi. "Classification of Obesity among South African Female Adolescents: Comparative Analysis of Logistic Regression and Random Forest Algorithms". International Journal of Environmental Research and Public Health 21, n.º 1 (19 de dezembro de 2023): 2. http://dx.doi.org/10.3390/ijerph21010002.
Texto completo da fonteRosker, Eva S., Rajinder Sandhu, Jimmy Hester, Mark S. Goorsky e Jesse Tice. "Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities". International Journal of Antennas and Propagation 2018 (2018): 1–19. http://dx.doi.org/10.1155/2018/9359528.
Texto completo da fonteDeng, Rui, Yanning Guan, Danlu Cai, Tao Yang, Klaus Fraedrich, Chunyan Zhang, Jiakui Tang, Zhouwei Liao, Zhishou Wei e Shan Guo. "Supervised versus Semi-Supervised Urban Functional Area Prediction: Uncertainty, Robustness and Sensitivity". Remote Sensing 15, n.º 2 (6 de janeiro de 2023): 341. http://dx.doi.org/10.3390/rs15020341.
Texto completo da fonteBalakrishnan, Charumathi, e Mangaiyarkarasi Thiagarajan. "CREDIT RISK MODELLING FOR INDIAN DEBT SECURITIES USING MACHINE LEARNING". Buletin Ekonomi Moneter dan Perbankan 24 (8 de março de 2021): 107–28. http://dx.doi.org/10.21098/bemp.v24i0.1401.
Texto completo da fonteUtami, Annisaa, Dimas Fanny Hebrasianto Permadi, Yesy Diah Rosita e Jumanto Unjung. "Performance Comparison of Random Forest (RF) and Classification and Regression Trees (CART) for Hotel Star Rating Prediction". Scientific Journal of Informatics 11, n.º 3 (22 de outubro de 2024): 733–48. http://dx.doi.org/10.15294/sji.v11i3.11068.
Texto completo da fonteXu, Wenjuan, Xin Huang, Zhengjun Yang, Mengmeng Zhou e Jiandong Huang. "Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study". Materials 15, n.º 5 (27 de fevereiro de 2022): 1791. http://dx.doi.org/10.3390/ma15051791.
Texto completo da fontePanigrahy, Parth Sarathi, Deepjyoti Santra e Paramita Chattopadhyay. "Decent fault classification of VFD fed induction motor using random forest algorithm". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 34, n.º 4 (20 de julho de 2020): 492–504. http://dx.doi.org/10.1017/s0890060420000311.
Texto completo da fonteLiu, You-Jiang, Bang-Hua Zhou, Jie Zhou e Yi-Nong Liu. "A Two-Step Identification Approach for Twin-Box Models of RF Power Amplifier". International Journal of Microwave Science and Technology 2011 (18 de setembro de 2011): 1–5. http://dx.doi.org/10.1155/2011/468497.
Texto completo da fonteDong, Zhengcheng, Yanjun Fang, Meng Tian e Rong Zhang. "Approaches to improve the robustness on interdependent networks against cascading failures with load-based model". Modern Physics Letters B 29, n.º 32 (30 de novembro de 2015): 1550210. http://dx.doi.org/10.1142/s0217984915502103.
Texto completo da fonteHuang, Huang e Huang. "A Novel Algorithm for Structural Reliability Analysis Based on Finite Step Length and Armijo Line Search". Applied Sciences 9, n.º 12 (21 de junho de 2019): 2546. http://dx.doi.org/10.3390/app9122546.
Texto completo da fonteAlharbi, Abdulmajeed Atiah. "Classification Performance Analysis of Decision Tree-Based Algorithms with Noisy Class Variable". Discrete Dynamics in Nature and Society 2024 (1 de fevereiro de 2024): 1–10. http://dx.doi.org/10.1155/2024/6671395.
Texto completo da fonteJiang, Zhi, Longhai Tian, Wei Liu, Bo Song, Chao Xue, Tianzong Li, Jin Chen e Fang Wei. "Random forest vs. logistic regression: Predicting angiographic in-stent restenosis after second-generation drug-eluting stent implantation". PLOS ONE 17, n.º 5 (23 de maio de 2022): e0268757. http://dx.doi.org/10.1371/journal.pone.0268757.
Texto completo da fonteShang, Qiang, Derong Tan, Song Gao e Linlin Feng. "A Hybrid Method for Traffic Incident Duration Prediction Using BOA-Optimized Random Forest Combined with Neighborhood Components Analysis". Journal of Advanced Transportation 2019 (20 de janeiro de 2019): 1–11. http://dx.doi.org/10.1155/2019/4202735.
Texto completo da fonteGhasemi, Jahan B., e Somayeh Pirhadi. "Docking alignment-3D-QSAR of a new class of potent and non-chiral indole-3-carboxamide-based renin inhibitors". Collection of Czechoslovak Chemical Communications 76, n.º 12 (2011): 1447–69. http://dx.doi.org/10.1135/cccc2011070.
Texto completo da fonteSun, Liting, Da Ke, Xiang Wang, Zhitao Huang e Kaizhu Huang. "Robustness of Deep Learning-Based Specific Emitter Identification under Adversarial Attacks". Remote Sensing 14, n.º 19 (7 de outubro de 2022): 4996. http://dx.doi.org/10.3390/rs14194996.
Texto completo da fonteZheng, Weiling, Yu Zhang, Landu Jiang, Dian Zhang e Tao Gu. "MeshID: Few-Shot Finger Gesture Based User Identification Using Orthogonal Signal Interference". Sensors 24, n.º 6 (20 de março de 2024): 1978. http://dx.doi.org/10.3390/s24061978.
Texto completo da fonteXia, Yunya. "Predicting China's Crude Oil Futures Prices: A Strategic Comparison of Random Forest and Time Series Models". Advances in Economics, Management and Political Sciences 136, n.º 1 (26 de dezembro de 2024): 114–23. https://doi.org/10.54254/2754-1169/2024.18817.
Texto completo da fonteKer, Ming-Dou, Bing-Jye Kuo e Yuan-Wen Hsiao. "Optimization of broadband RF performance and ESD robustness by -model distributed ESD protection scheme". Journal of Electrostatics 64, n.º 2 (fevereiro de 2006): 80–87. http://dx.doi.org/10.1016/j.elstat.2005.03.086.
Texto completo da fonteEloudi, Hasna, Mohammed Hssaisoune, Hanane Reddad, Mustapha Namous, Maryem Ismaili, Samira Krimissa, Mustapha Ouayah e Lhoussaine Bouchaou. "Robustness of Optimized Decision Tree-Based Machine Learning Models to Map Gully Erosion Vulnerability". Soil Systems 7, n.º 2 (16 de maio de 2023): 50. http://dx.doi.org/10.3390/soilsystems7020050.
Texto completo da fonteZhang, Yajun, Yan Yang, Zijian Li, Zhixiong Yang, Xu Liu e Bo Yuan. "RF-Alphabet: Cross Domain Alphabet Recognition System Based on RFID Differential Threshold Similarity Calculation Model". Sensors 23, n.º 2 (13 de janeiro de 2023): 920. http://dx.doi.org/10.3390/s23020920.
Texto completo da fonteZhang, Lei. "The Evaluation on the Credit Risk of Enterprises with the CNN-LSTM-ATT Model". Computational Intelligence and Neuroscience 2022 (22 de setembro de 2022): 1–10. http://dx.doi.org/10.1155/2022/6826573.
Texto completo da fonteWang, Zhiming, Yafei Zhang e Yalong Song. "An Adaptive First-Order Reliability Analysis Method for Nonlinear Problems". Mathematical Problems in Engineering 2020 (14 de abril de 2020): 1–11. http://dx.doi.org/10.1155/2020/3925689.
Texto completo da fonteMendoza Paz, Santiago, Mauricio F. Villazón Gómez e Patrick Willems. "Adapting to Climate Change with Machine Learning: The Robustness of Downscaled Precipitation in Local Impact Analysis". Water 16, n.º 21 (26 de outubro de 2024): 3070. http://dx.doi.org/10.3390/w16213070.
Texto completo da fonteYou, Weizhen, Saidi Alexandre, Mohamed Ichchou, Zine Abdel e Xiaopin Zhong. "Reliability modeling and prediction of passive controlled structures through Random Forest". MATEC Web of Conferences 241 (2018): 01023. http://dx.doi.org/10.1051/matecconf/201824101023.
Texto completo da fonteLai e Tsai. "Improving GIS-based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning". Sensors 19, n.º 17 (27 de agosto de 2019): 3717. http://dx.doi.org/10.3390/s19173717.
Texto completo da fonteDong, Zhengcheng, Yanjun Fang, Meng Tian e Zhengmin Kong. "The influence of the depth of k-core layers on the robustness of interdependent networks against cascading failures". International Journal of Modern Physics C 28, n.º 02 (fevereiro de 2017): 1750020. http://dx.doi.org/10.1142/s0129183117500206.
Texto completo da fonteSakhare, R. S., S. S. Pekamwar e T. V. Gitte. "STABILITY INDICATING HIGH PERFORMANCE THIN-LAYER CHROMATOGRAPHY METHOD FOR SIMULTANEOUS ESTIMATION OF AMBROXOL HYDROCHLORIDE AND LORATADINE IN PHARMACEUTICAL DOSAGE FORM". INDIAN DRUGS 55, n.º 08 (28 de agosto de 2018): 44–51. http://dx.doi.org/10.53879/id.55.08.10968.
Texto completo da fonteSchoenlinner, Bernhard, Armin Stehle, Christian Siegel, William Gautier, Benedikt Schulte, Sascha Figur, Ulrich Prechtel e Volker Ziegler. "The low-complexity RF MEMS switch at EADS: an overview". International Journal of Microwave and Wireless Technologies 3, n.º 5 (3 de agosto de 2011): 499–508. http://dx.doi.org/10.1017/s1759078711000729.
Texto completo da fonteMD Tanvir Islam, Eftekhar Hossain Ayon, Bishnu Padh Ghosh, MD, Salim Chowdhury, Rumana Shahid, Aisharyja Roy puja, Sanjida Rahman, Aslima Akter, Mamunur Rahman e Mohammad Shafiquzzaman Bhuiyan. "Revolutionizing Retail: A Hybrid Machine Learning Approach for Precision Demand Forecasting and Strategic Decision-Making in Global Commerce". Journal of Computer Science and Technology Studies 6, n.º 1 (2 de janeiro de 2024): 33–39. http://dx.doi.org/10.32996/jcsts.2024.6.1.4.
Texto completo da fonteNong, Kaifei, Hua Zhang e Zhenzhen Liu. "Comparative Study of Different Machine Learning Models for Heat Transfer Performance Prediction of Evaporators in Modular Refrigerated Display Cabinets". Energies 17, n.º 23 (8 de dezembro de 2024): 6189. https://doi.org/10.3390/en17236189.
Texto completo da fonteSong, Minseok, Hyeyoom Jung, Seungyong Lee, Donghyeon Kim e Minkyu Ahn. "Diagnostic Classification and Biomarker Identification of Alzheimer’s Disease with Random Forest Algorithm". Brain Sciences 11, n.º 4 (2 de abril de 2021): 453. http://dx.doi.org/10.3390/brainsci11040453.
Texto completo da fonteRaju, Matiur Rahman, Mahfuzur Rahman, Md Monirul Islam, Noor Md Sadiqul Hasan, Md Mehedi Hasan, Tarin Sharmily e Mohammed Sajib Hosen. "A Comparative Analysis of Machine Learning Approaches for Evaluating the Compressive Strength of Pozzolanic Concrete". IUBAT Review 7, n.º 1 (30 de junho de 2024): 90–122. http://dx.doi.org/10.3329/iubatr.v7i1.74329.
Texto completo da fonte