Artigos de revistas sobre o tema "Respiratory motion prediction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Respiratory motion prediction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dürichen, R., T. Wissel, F. Ernst, A. Schlaefer e A. Schweikard. "Multivariate respiratory motion prediction". Physics in Medicine and Biology 59, n.º 20 (25 de setembro de 2014): 6043–60. http://dx.doi.org/10.1088/0031-9155/59/20/6043.
Texto completo da fonteErnst, Floris, Alexander Schlaefer e Achim Schweikard. "Predicting the outcome of respiratory motion prediction". Medical Physics 38, n.º 10 (22 de setembro de 2011): 5569–81. http://dx.doi.org/10.1118/1.3633907.
Texto completo da fonteRen, Qing, Seiko Nishioka, Hiroki Shirato e Ross I. Berbeco. "Adaptive prediction of respiratory motion for motion compensation radiotherapy". Physics in Medicine and Biology 52, n.º 22 (26 de outubro de 2007): 6651–61. http://dx.doi.org/10.1088/0031-9155/52/22/007.
Texto completo da fonteErnst, F., R. Dürichen, A. Schlaefer e A. Schweikard. "Evaluating and comparing algorithms for respiratory motion prediction". Physics in Medicine and Biology 58, n.º 11 (16 de maio de 2013): 3911–29. http://dx.doi.org/10.1088/0031-9155/58/11/3911.
Texto completo da fonteIchiji, Kei, Noriyasu Homma, Masao Sakai, Yuichiro Narita, Yoshihiro Takai, Xiaoyong Zhang, Makoto Abe, Norihiro Sugita e Makoto Yoshizawa. "A Time-Varying Seasonal Autoregressive Model-Based Prediction of Respiratory Motion for Tumor following Radiotherapy". Computational and Mathematical Methods in Medicine 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/390325.
Texto completo da fonteJöhl, Alexander, Yannick Berdou, Matthias Guckenberger, Stephan Klöck, Mirko Meboldt, Melanie Zeilinger, Stephanie Tanadini-Lang e Marianne Schmid Daners. "Performance behavior of prediction filters for respiratory motion compensation in radiotherapy". Current Directions in Biomedical Engineering 3, n.º 2 (7 de setembro de 2017): 429–32. http://dx.doi.org/10.1515/cdbme-2017-0090.
Texto completo da fonteRasheed, Asad, e Kalyana C. Veluvolu. "Respiratory Motion Prediction with Empirical Mode Decomposition-Based Random Vector Functional Link". Mathematics 12, n.º 4 (16 de fevereiro de 2024): 588. http://dx.doi.org/10.3390/math12040588.
Texto completo da fonteFujii, Tatsuya, Norihiro Koizumi, Atsushi Kayasuga, Dongjun Lee, Hiroyuki Tsukihara, Hiroyuki Fukuda, Kiyoshi Yoshinaka et al. "Servoing Performance Enhancement via a Respiratory Organ Motion Prediction Model for a Non-Invasive Ultrasound Theragnostic System". Journal of Robotics and Mechatronics 29, n.º 2 (20 de abril de 2017): 434–46. http://dx.doi.org/10.20965/jrm.2017.p0434.
Texto completo da fonteYang, Dongrong, Yuhua Huang, Bing Li, Jing Cai e Ge Ren. "Dynamic Chest Radiograph Simulation Technique with Deep Convolutional Neural Networks: A Proof-of-Concept Study". Cancers 15, n.º 24 (8 de dezembro de 2023): 5768. http://dx.doi.org/10.3390/cancers15245768.
Texto completo da fonteZhang, Xiangyu, Xinyu Song, Guangjun Li, Lian Duan, Guangyu Wang, Guyu Dai, Ying Song, Jing Li e Sen Bai. "Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor". Technology in Cancer Research & Treatment 21 (janeiro de 2022): 153303382211432. http://dx.doi.org/10.1177/15330338221143224.
Texto completo da fonteOKUSAKO, Shouta, Fumitake FUJII e Takehiro SHIINOKI. "Prediction of respiratory tumor motion based on FIR repetitive control". Proceedings of Mechanical Engineering Congress, Japan 2019 (2019): J24110P. http://dx.doi.org/10.1299/jsmemecj.2019.j24110p.
Texto completo da fonteKalet, Alan, George Sandison, Huanmei Wu e Ruth Schmitz. "A state-based probabilistic model for tumor respiratory motion prediction". Physics in Medicine and Biology 55, n.º 24 (26 de novembro de 2010): 7615–31. http://dx.doi.org/10.1088/0031-9155/55/24/015.
Texto completo da fonteRuan, Dan. "Kernel density estimation-based real-time prediction for respiratory motion". Physics in Medicine and Biology 55, n.º 5 (4 de fevereiro de 2010): 1311–26. http://dx.doi.org/10.1088/0031-9155/55/5/004.
Texto completo da fonteChang, Panchun, Jun Dang, Jianrong Dai e Wenzheng Sun. "Real-Time Respiratory Tumor Motion Prediction Based on a Temporal Convolutional Neural Network: Prediction Model Development Study". Journal of Medical Internet Research 23, n.º 8 (27 de agosto de 2021): e27235. http://dx.doi.org/10.2196/27235.
Texto completo da fonteHillman, D. R., e K. E. Finucane. "A model of the respiratory pump". Journal of Applied Physiology 63, n.º 3 (1 de setembro de 1987): 951–61. http://dx.doi.org/10.1152/jappl.1987.63.3.951.
Texto completo da fonteBazaluk, Oleg, Alim Ennan, Serhii Cheberiachko, Oleh Deryugin, Yurii Cheberiachko, Pavlo Saik, Vasyl Lozynskyi e Ivan Knysh. "Research on Regularities of Cyclic Air Motion through a Respirator Filter". Applied Sciences 11, n.º 7 (1 de abril de 2021): 3157. http://dx.doi.org/10.3390/app11073157.
Texto completo da fonteJabbari, Keyvan, Nima Rostampour, Mahdad Esmaeili, Mohammad Mohammadi e Shahabedin Nabavi. "Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach". Journal of Medical Signals & Sensors 8, n.º 1 (2018): 25. http://dx.doi.org/10.4103/jmss.jmss_45_17.
Texto completo da fonteSharp, Gregory C., Steve B. Jiang, Shinichi Shimizu e Hiroki Shirato. "Prediction of respiratory tumour motion for real-time image-guided radiotherapy". Physics in Medicine and Biology 49, n.º 3 (16 de janeiro de 2004): 425–40. http://dx.doi.org/10.1088/0031-9155/49/3/006.
Texto completo da fonteErnst, Floris, Alexander Schlaefer, Sonja Dieterich e Achim Schweikard. "A Fast Lane Approach to LMS prediction of respiratory motion signals". Biomedical Signal Processing and Control 3, n.º 4 (outubro de 2008): 291–99. http://dx.doi.org/10.1016/j.bspc.2008.06.001.
Texto completo da fonteRuan, D., J. A. Fessler e J. M. Balter. "Real-time prediction of respiratory motion based on local regression methods". Physics in Medicine and Biology 52, n.º 23 (16 de novembro de 2007): 7137–52. http://dx.doi.org/10.1088/0031-9155/52/23/024.
Texto completo da fonteLee, Suk Jin, Yuichi Motai, Elisabeth Weiss e Shumei S. Sun. "Customized prediction of respiratory motion with clustering from multiple patient interaction". ACM Transactions on Intelligent Systems and Technology 4, n.º 4 (setembro de 2013): 1–17. http://dx.doi.org/10.1145/2508037.2508050.
Texto completo da fonteFan, Qi, Xiaoyang Yu, Yanqiao Zhao e Shuang Yu. "A Respiratory Motion Prediction Method Based on Improved Relevance Vector Machine". Mobile Networks and Applications 25, n.º 6 (26 de julho de 2020): 2270–79. http://dx.doi.org/10.1007/s11036-020-01610-7.
Texto completo da fonteJöhl, Alexander, Stefanie Ehrbar, Matthias Guckenberger, Stephan Klöck, Mirko Meboldt, Melanie Zeilinger, Stephanie Tanadini‐Lang e Marianne Schmid Daners. "Performance comparison of prediction filters for respiratory motion tracking in radiotherapy". Medical Physics 47, n.º 2 (7 de dezembro de 2019): 643–50. http://dx.doi.org/10.1002/mp.13929.
Texto completo da fonteNabavi, Shahabedin, Monireh Abdoos, MohsenEbrahimi Moghaddam e Mohammad Mohammadi. "Respiratory motion prediction using deep convolutional long short-term memory network". Journal of Medical Signals & Sensors 10, n.º 2 (2020): 69. http://dx.doi.org/10.4103/jmss.jmss_38_19.
Texto completo da fonteChen, Yumiao, e Zhongliang Yang. "GEP-based predictive modeling of breathing resistances of wearing respirators on human body via sEMG and RSP sensors". Sensor Review 39, n.º 4 (15 de julho de 2019): 439–48. http://dx.doi.org/10.1108/sr-08-2018-0210.
Texto completo da fonteKim, Moo-Sub, Joo-Young Jung, Do-Kun Yoon, Han-Back Shin, Tae Suk Suh e Jae-Hong Jung. "The first step towards a respiratory motion prediction for natural-breathing by using a motion generator". Journal of the Korean Physical Society 70, n.º 6 (março de 2017): 621–28. http://dx.doi.org/10.3938/jkps.70.621.
Texto completo da fonteErnst, Floris, Ralf Bruder, Alexander Schlaefer e Achim Schweikard. "Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction". International Journal of Computer Assisted Radiology and Surgery 6, n.º 1 (30 de abril de 2010): 93–101. http://dx.doi.org/10.1007/s11548-010-0424-9.
Texto completo da fonteWu, H., G. Sharp, B. Salzberg, D. Kaeli, H. Shirato e S. Jiang. "SU-DD-A3-06: Model-Based Probabilistic Prediction of Tumor Respiratory Motion". Medical Physics 32, n.º 6Part2 (26 de maio de 2005): 1894. http://dx.doi.org/10.1118/1.1997429.
Texto completo da fonteRasheed, Asad, A. T. Adebisi e Kalyana C. Veluvolu. "Respiratory Motion Prediction with Random Vector Functional Link (RVFL) Based Neural Networks". Journal of Physics: Conference Series 1626 (outubro de 2020): 012022. http://dx.doi.org/10.1088/1742-6596/1626/1/012022.
Texto completo da fonteKakar, Manish, Håkan Nyström, Lasse Rye Aarup, Trine Jakobi Nøttrup e Dag Rune Olsen. "Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)". Physics in Medicine and Biology 50, n.º 19 (21 de setembro de 2005): 4721–28. http://dx.doi.org/10.1088/0031-9155/50/19/020.
Texto completo da fonteTatinati, Sivanagaraja, Kianoush Nazarpour, Wei Tech Ang e Kalyana C. Veluvolu. "Ensemble framework based real-time respiratory motion prediction for adaptive radiotherapy applications". Medical Engineering & Physics 38, n.º 8 (agosto de 2016): 749–57. http://dx.doi.org/10.1016/j.medengphy.2016.04.021.
Texto completo da fontePreiswerk, Frank, Valeria De Luca, Patrik Arnold, Zarko Celicanin, Lorena Petrusca, Christine Tanner, Oliver Bieri, Rares Salomir e Philippe C. Cattin. "Model-guided respiratory organ motion prediction of the liver from 2D ultrasound". Medical Image Analysis 18, n.º 5 (julho de 2014): 740–51. http://dx.doi.org/10.1016/j.media.2014.03.006.
Texto completo da fonteYu, Shumei, Jiateng Wang, Jinguo Liu, Rongchuan Sun, Shaolong Kuang e Lining Sun. "Rapid Prediction of Respiratory Motion Based on Bidirectional Gated Recurrent Unit Network". IEEE Access 8 (2020): 49424–35. http://dx.doi.org/10.1109/access.2020.2980002.
Texto completo da fontePutra, Devi, Olivier C. L. Haas, John A. Mills e Keith J. Burnham. "A multiple model approach to respiratory motion prediction for real-time IGRT". Physics in Medicine and Biology 53, n.º 6 (25 de fevereiro de 2008): 1651–63. http://dx.doi.org/10.1088/0031-9155/53/6/010.
Texto completo da fonteRuan, Dan, e Paul Keall. "Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning". Physics in Medicine and Biology 55, n.º 11 (4 de maio de 2010): 3011–25. http://dx.doi.org/10.1088/0031-9155/55/11/002.
Texto completo da fonteWimmert, L., M. Nielsen, T. Gauer, C. Hofmann e R. Werner. "PO-1886 Respiratory motion prediction based on LSTM and linear regression models". Radiotherapy and Oncology 182 (maio de 2023): S1629—S1630. http://dx.doi.org/10.1016/s0167-8140(23)66801-x.
Texto completo da fonteÖzbek, Yusuf, Zoltán Bárdosi e Wolfgang Freysinger. "respiTrack: Patient-specific real-time respiratory tumor motion prediction using magnetic tracking". International Journal of Computer Assisted Radiology and Surgery 15, n.º 6 (28 de abril de 2020): 953–62. http://dx.doi.org/10.1007/s11548-020-02174-3.
Texto completo da fonteLombardo, Elia, Moritz Rabe, Yuqing Xiong, Lukas Nierer, Davide Cusumano, Lorenzo Placidi, Luca Boldrini et al. "Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy". Physics in Medicine & Biology 67, n.º 9 (19 de abril de 2022): 095006. http://dx.doi.org/10.1088/1361-6560/ac60b7.
Texto completo da fonteWu, Yuwen, Zhisen Wang, Yuyi Chu, Renyuan Peng, Haoran Peng, Hongbo Yang, Kai Guo e Juzhong Zhang. "Current Research Status of Respiratory Motion for Thorax and Abdominal Treatment: A Systematic Review". Biomimetics 9, n.º 3 (12 de março de 2024): 170. http://dx.doi.org/10.3390/biomimetics9030170.
Texto completo da fonteBalasubramanian, A., R. Shamsuddin, B. Prabhakaran e A. Sawant. "Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts". Physics in Medicine and Biology 62, n.º 5 (9 de fevereiro de 2017): 1791–809. http://dx.doi.org/10.1088/1361-6560/aa58c3.
Texto completo da fonteLi, G., A. Yuan e J. Wei. "TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction". Medical Physics 41, n.º 6Part27 (29 de maio de 2014): 473. http://dx.doi.org/10.1118/1.4889330.
Texto completo da fonteErnst, F., R. Bruder, A. Schlaefer e A. Schweikard. "TH-C-BRC-06: Performance Measures and Pre-Processing for Respiratory Motion Prediction". Medical Physics 38, n.º 6Part35 (junho de 2011): 3857. http://dx.doi.org/10.1118/1.3613523.
Texto completo da fonteKotoku, J., S. Kumagai, A. Haga, S. Nakabayashi, N. Arai e T. Kobayashi. "TU-F-CAMPUS-J-03: Prediction of Respiratory Motion Using State Space Models". Medical Physics 42, n.º 6Part35 (junho de 2015): 3638. http://dx.doi.org/10.1118/1.4925793.
Texto completo da fonteLi, G., H. Xie, D. A. Miller, Y. Zhuge, E. E. Klein, D. Low, H. Ning, D. Citrin, K. Camphausen e R. W. Miller. "Investigation of using Optical Surface Imaging for Volumetric Prediction of Respiratory Organ Motion". International Journal of Radiation Oncology*Biology*Physics 75, n.º 3 (novembro de 2009): S578. http://dx.doi.org/10.1016/j.ijrobp.2009.07.1321.
Texto completo da fonteLiu, Wenyang, Amit Sawant e Dan Ruan. "Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach". Physics in Medicine and Biology 61, n.º 13 (14 de junho de 2016): 4989–99. http://dx.doi.org/10.1088/0031-9155/61/13/4989.
Texto completo da fontePollock, S., D. Lee, P. Keall e T. Kim. "WE-G-213CD-07: Enhancing Respiratory Motion Prediction Accuracy Using Audiovisual (AV) Biofeedback". Medical Physics 39, n.º 6Part28 (junho de 2012): 3972. http://dx.doi.org/10.1118/1.4736208.
Texto completo da fonteJeong, Sangwoon, Wonjoong Cheon, Sungkoo Cho e Youngyih Han. "Clinical applicability of deep learning-based respiratory signal prediction models for four-dimensional radiation therapy". PLOS ONE 17, n.º 10 (18 de outubro de 2022): e0275719. http://dx.doi.org/10.1371/journal.pone.0275719.
Texto completo da fonteLin, Hui, Chengyu Shi, Brian Wang, Maria F. Chan, Xiaoli Tang e Wei Ji. "Towards real-time respiratory motion prediction based on long short-term memory neural networks". Physics in Medicine & Biology 64, n.º 8 (10 de abril de 2019): 085010. http://dx.doi.org/10.1088/1361-6560/ab13fa.
Texto completo da fonteJöhl, A., M. Schmid Daners, S. Ehrbar, M. Guckenberger, S. Klöck e S. Lang. "PO-0925: Respiratory motion prediction filters for real time tumor tracking during radiation treatment". Radiotherapy and Oncology 115 (abril de 2015): S481—S482. http://dx.doi.org/10.1016/s0167-8140(15)40917-x.
Texto completo da fonteMauro, Gianfranco, Maria De Carlos Diez, Julius Ott, Lorenzo Servadei, Manuel P. Cuellar e Diego P. Morales-Santos. "Few-Shot User-Adaptable Radar-Based Breath Signal Sensing". Sensors 23, n.º 2 (10 de janeiro de 2023): 804. http://dx.doi.org/10.3390/s23020804.
Texto completo da fonte