Siga este link para ver outros tipos de publicações sobre o tema: Résonance lower-Hybrid du plasma.

Artigos de revistas sobre o tema "Résonance lower-Hybrid du plasma"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Résonance lower-Hybrid du plasma".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Verdon, Alix L., I. H. Cairns, D. B. Melrose e P. A. Robinson. "Properties of lower hybrid waves". Proceedings of the International Astronomical Union 4, S257 (setembro de 2008): 569–73. http://dx.doi.org/10.1017/s1743921309029871.

Texto completo da fonte
Resumo:
AbstractMost treatments of lower hybrid waves include either electromagnetic or warm-plasma effects, but not both. Here we compare numerical dispersion curves for lower hybrid waves with a new analytic dispersion relation that includes both warm and electromagnetic effects. Very good agreement is obtained over significant ranges in wavenumber and plasma parameters, except where ion magnetization effects become important.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kintner, P. M., J. Vago, S. Chesney, R. L. Arnoldy, K. A. Lynch, C. J. Pollock e T. E. Moore. "Localized lower hybrid acceleration of ionospheric plasma". Physical Review Letters 68, n.º 16 (20 de abril de 1992): 2448–51. http://dx.doi.org/10.1103/physrevlett.68.2448.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kostrov, A. V., A. V. Strikovskiy e A. V. Shashurin. "Plasma Turbulence near the Lower Hybrid Resonance". Plasma Physics Reports 27, n.º 2 (fevereiro de 2001): 137–42. http://dx.doi.org/10.1134/1.1348491.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Maity, Chandan, Nikhil Chakrabarti e Sudip Sengupta. "Nonlinear lower-hybrid oscillations in cold plasma". Physics of Plasmas 17, n.º 8 (agosto de 2010): 082306. http://dx.doi.org/10.1063/1.3480644.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rapozo, Cândido da Cunha, Antonio Serbêto e Lindolff Thadeu Carneiro. "Lower Hybrid Plasma Heating with Anisotropic Temperature". Japanese Journal of Applied Physics 32, Part 1, No. 7 (15 de julho de 1993): 3282–86. http://dx.doi.org/10.1143/jjap.32.3282.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

BINGHAM, R., J. M. DAWSON e V. D. SHAPIRO. "Particle acceleration by lower-hybrid turbulence". Journal of Plasma Physics 68, n.º 3 (abril de 2002): 161–72. http://dx.doi.org/10.1017/s0022377802001939.

Texto completo da fonte
Resumo:
We investigate particle acceleration by strong lower-hybrid turbulence produced by the relaxation of an energetic perpendicular ion ring distribution. Ion ring distributions are associated with counterstreaming plasma flows in a magnetic field, and are found at perpendicular shocks as a result of ion reflection from the shock surface. Using a 2½D particle-in-cell (PIC) code that is fully electromagnetic and relativistic, we show that the ion ring is unstable to the generation of strong plasma turbulence at the lower-hybrid resonant frequency. The lower-hybrid wave turbulence collapses in configuration space, producing density cavities. The collapse of the cavities is halted by particle acceleration, producing energetic electron and ion tails. For solar flare plasmas with temperatures of 1 keV and a ratio of the plasma frequency to the electron cyclotron frequency of ½, we demonstrate electron acceleration to energies up to MeV, while the ions are accelerated to energies in the region of several MeV.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Abdul Rauf, I. Zeba e Muhammad Saqlain. "Modified Dust-Lower-Hybrid Waves in Quantum Plasma". Scientific Inquiry and Review 2, n.º 2 (30 de abril de 2018): 11–21. http://dx.doi.org/10.32350/22/020202.

Texto completo da fonte
Resumo:
Dust-lower-hybrid waves in quantum plasma have been studied. The dispersion relation of the dust-lower-hybrid wave has been examined using the quantum hydrodynamic model of plasma in an ultra-cold Fermi dusty plasma in the presence of a uniform external magnetic field. Graphical analysis shows that the electron Fermi temperature effect and the quantum corrections give rise to significant effects on the dust-lower-hybrid wave of the magnetized quantum dusty plasma.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Rauf, Abdul, I. Zeba e M. Saqlain. "Modified Dust-Lower-Hybrid Waves In Quantum Plasma". Scientific Inquiry and Review 2, n.º 2 (abril de 2018): 10–19. http://dx.doi.org/10.29145/sir/22/020202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Praburam, G. "Lower‐hybrid quasimode decay in a plasma cylinder". Physics of Fluids B: Plasma Physics 3, n.º 7 (julho de 1991): 1576–78. http://dx.doi.org/10.1063/1.859676.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Weitzner, Harold. "Lower hybrid waves in the cold plasma model". Communications on Pure and Applied Mathematics 38, n.º 6 (novembro de 1985): 919–32. http://dx.doi.org/10.1002/cpa.3160380618.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Pericoli-Ridolfini, V. "Lower hybrid effects on the FT scrape-off plasma". Plasma Physics and Controlled Fusion 27, n.º 6 (1 de junho de 1985): 709–15. http://dx.doi.org/10.1088/0741-3335/27/6/006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Alladio, F., E. Barbato, G. Bardotti, R. Bartiromo, G. Bracco, F. Bombarda, G. Buceti et al. "Energy confinement and plasma heating during lower hybrid experiments". Plasma Physics and Controlled Fusion 28, n.º 1A (1 de janeiro de 1986): 179–90. http://dx.doi.org/10.1088/0741-3335/28/1a/016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

An, T., R. L. Merlino e N. D’Angelo. "Lower‐hybrid waves in a plasma with negative ions". Physics of Fluids B: Plasma Physics 5, n.º 6 (junho de 1993): 1917–18. http://dx.doi.org/10.1063/1.860775.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Kim, S. H., J. F. Artaud, V. Basiuk, A. Bécoulet, V. Dokuka, G. T. Hoang, F. Imbeaux, R. R. Khayrutdinov, J. B. Lister e V. E. Lukash. "Lower hybrid assisted plasma current ramp-up in ITER". Plasma Physics and Controlled Fusion 51, n.º 6 (6 de maio de 2009): 065020. http://dx.doi.org/10.1088/0741-3335/51/6/065020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Maity, Chandan, e Nikhil Chakrabarti. "Nonlinear lower hybrid oscillations in a cold viscous plasma". Physics of Plasmas 18, n.º 12 (dezembro de 2011): 124502. http://dx.doi.org/10.1063/1.3672004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Wei, Rui, e Yinhua Chen. "Nonlinear Lower Hybrid Waves in Two-ion-species Plasma". Physica Scripta 71, n.º 6 (1 de janeiro de 2005): 648–51. http://dx.doi.org/10.1088/0031-8949/71/6/012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tirozzi, Brunello. "Scattering of Lower Hybrid Waves in a Magnetized Plasma". Physics 2, n.º 4 (29 de novembro de 2020): 640–53. http://dx.doi.org/10.3390/physics2040037.

Texto completo da fonte
Resumo:
In this paper, the Maxwell equations for the electric field in a cold magnetized plasma in the half-space of x≥0 cm are solved. The boundary conditions for the electric field include a pointwise source at the plane x=0 cm, the derivatives of the electric field that are zero statV/cm2 at x=0 cm, and the field with all its derivatives that are zero at infinity. The solution is explored in terms of the Laplace transform in x and the Fourier transform in y-z directions. The expressions of the field components are obtained by the inverse Laplace transform and the inverse Fourier transform. The saddle-point technique and power expansion have been used for evaluating the inverse Fourier transform. The model represents the propagation of a lower hybrid wave generated by a pointwise antenna located at the boundary of the plasma. Here, the antenna is the boundary condition. The validation of the model is performed assuming that the electric field component Ey=0 statV/cm and by comparing it with the model of electromagnetic waves generated by a local small antenna located near the boundary of a tokamak, and an experiment is suggested.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

da C. Rapozo, C., A. S. de Assis, A. Serbêto e L. T. Carneiro. "Lower hybrid plasma heating in a magnetic-mirror field". Physical Review A 45, n.º 10 (1 de maio de 1992): 7469–74. http://dx.doi.org/10.1103/physreva.45.7469.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Petržilka, V. A. "On lower hybrid wave scattering by plasma density fluctuations". Czechoslovak Journal of Physics 38, n.º 8 (agosto de 1988): 937–40. http://dx.doi.org/10.1007/bf01601839.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Deka, P. N., e S. Gogoi. "The Wave Energy Up Conversion of Plasma Wave in Inhomogeneous Ionosphereic Plasma". Journal of Scientific Research 11, n.º 3 (1 de setembro de 2019): 339–50. http://dx.doi.org/10.3329/jsr.v11i3.40982.

Texto completo da fonte
Resumo:
Different types of instabilities are observed in the thermodynamically nonequilibrium Earth's ionosphere. Effective energy exchange process among waves may takes place through nonlinear interaction modes because of availability of free energy. We consider gradients in density and magnetic field is present in the system which support drift wave turbulence. In this study we concern on the wave energy up conversion of electrostatic nonresonant lower hybrid wave through plasma maser instability in the mid-altitude ionospheric region. We have formulated the growth rate of lower hybrid wave by Vlasov-Poisson mathematical frame and estimated its value by observational data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Kikuchi, Tetsuo, Keitaro Ohnishi, Yasuyoshi Yasaka, Kunihide Tachibana e Tohru Itoh. "Plasma Production and Wave Propagation in a Plasma Source Using Lower Hybrid Waves". Japanese Journal of Applied Physics 38, Part 1, No. 7B (30 de julho de 1999): 4351–56. http://dx.doi.org/10.1143/jjap.38.4351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Das, A. C. "Lower hybrid turbulence and tearing mode instability in magnetospheric plasma". Journal of Geophysical Research 97, A8 (1992): 12275. http://dx.doi.org/10.1029/92ja00446.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Prakash, Ved, Vijayshri, Suresh C. Sharma e Ruby Gupta. "Electron beam driven lower hybrid waves in a dusty plasma". Physics of Plasmas 20, n.º 5 (maio de 2013): 053701. http://dx.doi.org/10.1063/1.4803506.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Praburam, G., V. K. Tripathi e V. K. Jain. "Lower hybrid suppression of drift waves in a plasma cylinder". Physics of Fluids 31, n.º 10 (1988): 3145. http://dx.doi.org/10.1063/1.866972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Sharma, S. K., e A. Sudarshan. "Modulational instability of lower hybrid wave in a cylindrical plasma". Physica Scripta 48, n.º 5 (1 de novembro de 1993): 612–15. http://dx.doi.org/10.1088/0031-8949/48/5/018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Amin, M. R., A. M. Rizwan, M. K. Islam, M. Salimullah e P. K. Shukla. "Dust-lower-hybrid instability in a streaming magnetized dusty plasma". Physica Scripta 73, n.º 2 (11 de janeiro de 2006): 169–72. http://dx.doi.org/10.1088/0031-8949/73/2/007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

D'Angelo, N. "Dust–dust lower hybrid waves in a collisional dusty plasma". Physics Letters A 299, n.º 2-3 (julho de 2002): 226–29. http://dx.doi.org/10.1016/s0375-9601(02)00682-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Kuo, S. P. "Parametric excitation of lower hybrid waves by electron plasma waves". Physics Letters A 307, n.º 4 (fevereiro de 2003): 244–48. http://dx.doi.org/10.1016/s0375-9601(02)01601-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Salimullah, M. "Low-frequency dust-lower-hybrid modes in a dusty plasma". Physics Letters A 215, n.º 5-6 (junho de 1996): 296–98. http://dx.doi.org/10.1016/0375-9601(96)00226-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Hillairet, Julien, Riccardo Ragona, Laurent Colas, Walid Helou e Frédéric Bocquet. "Lower hybrid range cold magnetized plasma coupling in ANSYS HFSS". Fusion Engineering and Design 146 (setembro de 2019): 1473–75. http://dx.doi.org/10.1016/j.fusengdes.2019.02.108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Nave, M. F. F., K. Kirov, J. Bernardo, M. Brix, J. Ferreira, C. Giroud, N. Hawkes et al. "The effect of lower hybrid waves on JET plasma rotation". Nuclear Fusion 57, n.º 3 (22 de dezembro de 2016): 034002. http://dx.doi.org/10.1088/1741-4326/aa4e54.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Takase, Y., M. Honda, Y. Ikeda, T. Imai, K. Sakamoto, S. Tsuji, K. Uehara e K. Ushigusa. "Analysis of lower hybrid current driven plasma in JT-60". Nuclear Fusion 28, n.º 6 (1 de junho de 1988): 1112–16. http://dx.doi.org/10.1088/0029-5515/28/6/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bose, M. "Lower hybrid drift waves in a plasma with negative ions". Plasma Physics and Controlled Fusion 37, n.º 3 (1 de março de 1995): 223–28. http://dx.doi.org/10.1088/0741-3335/37/3/004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Maity, Chandan, Nikhil Chakrabarti e Sudip Sengupta. "Relativistic effects on nonlinear lower hybrid oscillations in cold plasma". Journal of Mathematical Physics 52, n.º 4 (abril de 2011): 043101. http://dx.doi.org/10.1063/1.3574354.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Guan, Xiaoyin, Hong Qin, Jian Liu e Nathaniel J. Fisch. "On the toroidal plasma rotations induced by lower hybrid waves". Physics of Plasmas 20, n.º 2 (fevereiro de 2013): 022502. http://dx.doi.org/10.1063/1.4791666.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sugaya, Reiji. "Plasma Heating by Nonlinear Landau Damping of Lower-Hybrid Waves". Journal of the Physical Society of Japan 59, n.º 9 (15 de setembro de 1990): 3227–36. http://dx.doi.org/10.1143/jpsj.59.3227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Iqbal, Z., U. Khanum e G. Murtaza. "Lower hybrid wave instability in a spin-polarized degenerate plasma". Contributions to Plasma Physics 59, n.º 3 (16 de outubro de 2018): 284–91. http://dx.doi.org/10.1002/ctpp.201800075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Bharuthram, R., e S. G. Tagare. "Electron-temperature effects on lower-hybrid-drift vortices". Journal of Plasma Physics 44, n.º 2 (outubro de 1990): 265–68. http://dx.doi.org/10.1017/s0022377800015166.

Texto completo da fonte
Resumo:
The nonlinear evolution of lower-hybrid-drift waves in an inhomogeneous magnetized plasma with warm electrons and cold ions is considered. The effect of finite electron temperature on a soliton solution of the set of nonlinear equations is examined.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hamabata, Hiromitsu, Tomikazu Namikawa e Kazuhiro Mori. "The effect of lower-hybrid waves on the propagation of hydromagnetic waves". Journal of Plasma Physics 40, n.º 2 (outubro de 1988): 337–51. http://dx.doi.org/10.1017/s0022377800013313.

Texto completo da fonte
Resumo:
Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Akimoto, K., K. Papadopoulos e D. Winske. "Lower-hybrid instabilities driven by an ion velocity ring". Journal of Plasma Physics 34, n.º 3 (dezembro de 1985): 445–65. http://dx.doi.org/10.1017/s0022377800003007.

Texto completo da fonte
Resumo:
The lower-hybrid instabilities in high-beta (ratio of plasma to magnetic pressure) plasmas driven by ring-ion distributions in velocity space are investigated. A dispersion equation including electromagnetic effects is derived. In the low-beta limit, analytic expressions are obtained which illuminate the physical nature of the instabilities. The complete dispersion equation is solved numerically as a function of ring speed and plasma beta for several types of ring distribution. Electromagnetic effects are important for relatively energetic rings even in the low-beta regime, suppressing growth rates and shifting the angle of propagation to more oblique angles. Stabilization by thermal effects is also discussed. Application of these results to the Earth's bow shock, AMPTE, comets and solar flares is suggested.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hall, J. O., G. Stenberg, A. I. Eriksson e M. André. "Formation of lower-hybrid solitary structures by modulational interaction between lower-hybrid and dispersive Alfvén waves". Annales Geophysicae 27, n.º 3 (2 de março de 2009): 1027–33. http://dx.doi.org/10.5194/angeo-27-1027-2009.

Texto completo da fonte
Resumo:
Abstract. We investigate the possibility that lower-hybrid solitary structures (LHSS), which are frequently observed in the Earth's ionosphere and magnetosphere, are formed as a result of a modulational interaction between lower-hybrid and dispersive Alfvén waves of initially small amplitude. A large amplitude lower-hybrid pump wave can excite density structures with length scales transverse to the geomagnetic field of the order of the ion gyroradius via a modulational instability. The structure formation in the nonlinear stage of the instability is investigated by numerical solutions of the governing equations, using plasma parameters relevant for LHSS observations in the upper ionosphere and in the magnetosphere. The numerical solutions reveal that the lower-hybrid waves become self-localized inside cylindrically symmetric (with respect to the ambient magnetic field) density cavities, in qualitative agreement with observations. Our model includes thermal electron effects but shows no stabilization at the ion sound gyroradius, suggesting that any preference of observed LHSS for that perpendicular scale likely is due to processes arresting the cavity collapse.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Sharma, P. K., D. Raju, S. K. Pathak, R. Srinivasan, K. K. Ambulkar, P. R. Parmar, C. G. Virani et al. "Current drive experiments in SST1 tokamak with lower hybrid waves". Nuclear Fusion 62, n.º 5 (28 de março de 2022): 056020. http://dx.doi.org/10.1088/1741-4326/ac4297.

Texto completo da fonte
Resumo:
Abstract The steadystate superconducting tokamak (SST1) is aimed to demonstrate long pulse plasma discharges employing non-inductive current drive by means of lower hybrid current drive (LHCD) system. The major and minor radius of the machine is 1.1 m and 0.2 m, respectively. The LHCD system for SST1 comprises of klystrons, each rated for 0.5 MW-CW rf power at a frequency of 3.7 GHz. The grill antenna comprises of two rows, each row accommodating 32 waveguide elements. Electron cyclotron resonance breakdown assisted Ohmic plasma is formed in SST1 to overcome the issues associated with low loop voltage start-ups. With recent modifications in the poloidal coils configuration, even with narrow EC pulse (∼50 ms), good repeatable and consistent Ohmic plasmas could be produced which helped in carrying out LHCD current drive experiments on SST1. These experiments demonstrated both fully as well as partially driven non-inductive plasma current in SST1 tokamak. Discharges with zero loop voltages were obtained. The interaction of lower hybrid waves with plasma and generation of suprathermal electrons could be established using energy spectra measured by CdTe detectors. Various other signatures like drop in loop voltages, negative loop voltages, spikes in hard x-rays and increase in second harmonic ECE signal, further confirmed the current drive by LHW’s. The beneficial effect of LHW’s in suppressing hard x-rays was also demonstrated in these experiments. The longest discharge of ∼650 ms could be obtained in SST1 with the help of LHW’s. In this paper, the experimental results obtained with LHCD experiments on SST1 is reported and discussed in more details.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Shklyar, David R., e Haruichi Washimi. "Lower hybrid resonance wave excitation by whistlers in the magnetospheric plasma". Journal of Geophysical Research 99, A12 (1994): 23695. http://dx.doi.org/10.1029/94ja01956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Konar, S., V. K. Jain e V. K. Tripathi. "Modulational instability of a lower hybrid wave in a plasma slab". Journal of Applied Physics 65, n.º 10 (15 de maio de 1989): 3798–801. http://dx.doi.org/10.1063/1.343392.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Watterson, R. L., Y. Takase, P. T. Bonoli, M. Porkolab, R. E. Slusher e C. M. Surko. "Spectrum and propagation of lower-hybrid waves in a tokamak plasma". Physics of Fluids 28, n.º 8 (1985): 2622. http://dx.doi.org/10.1063/1.865220.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Maehara, T., S. Yoshimura, T. Minami, K. Hanada, M. Nakamura, T. Maekawa e Y. Terumichi. "Electron cyclotron current drive in a lower hybrid current drive plasma". Nuclear Fusion 38, n.º 1 (janeiro de 1998): 39–57. http://dx.doi.org/10.1088/0029-5515/38/1/304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Prakash, Ved, Vijayshri, Suresh C. Sharma e Ruby Gupta. "Ion-beam driven lower hybrid waves in a magnetized dusty plasma". Physics of Plasmas 20, n.º 6 (junho de 2013): 063701. http://dx.doi.org/10.1063/1.4811392.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Pericoli-Ridolfini, V., E. Barbato, S. Cirant, H. Kroegler, L. Panaccione, S. Podda, F. Alladio et al. "High Plasma Density Lower-Hybrid Current Drive in the FTU Tokamak". Physical Review Letters 82, n.º 1 (4 de janeiro de 1999): 93–96. http://dx.doi.org/10.1103/physrevlett.82.93.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Mahanta, L., K. S. Goswami e S. Bujarbarua. "Lower‐hybrid‐like wave in a dusty plasma with charge fluctuation". Physics of Plasmas 3, n.º 2 (fevereiro de 1996): 694–95. http://dx.doi.org/10.1063/1.871903.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Verma, Prabal Singh. "Lower-hybrid oscillations in a cold magnetized electron-positron-ion plasma". AIP Advances 8, n.º 3 (março de 2018): 035022. http://dx.doi.org/10.1063/1.5023058.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia