Índice
Literatura científica selecionada sobre o tema "Réseau d'interactions génétiques"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Réseau d'interactions génétiques".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Teses / dissertações sobre o assunto "Réseau d'interactions génétiques"
Rochette, Samuel. "Utilisation de pertubations environnementales et génétiques du réseau d'interactions protéine-protéine pour disséquer des processus cellulaires". Master's thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25483.
Texto completo da fonteProteins are the molecular machines allowing the cell to accomplish a myriad of biological functions. To do so, proteins physically interact with each other in a reversible and tunable way, providing the cell a mechanism to quickly adapt to a changing environment. Thus, studying the dynamics of protein-protein interactions is key in understanding how cells adapt to various perturbations. The chapters included in this thesis illustrate the development of a method to identify and quantify changes in protein-protein interactions in response to environmental perturbations and how protein-protein interactions can be used as reporters to dissect the regulatory network of a protein phosphatase, calcineurin, using a network perturbation approach. Together, these two chapters illustrate the utility of network perturbation approaches to dissect complex cellular processes.
Deshpande, Jhelam Nitin. "Eco-evolutionary feedbacks and networks : from genes to landscapes". Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONG011.
Texto completo da fonteIt has long been recognised that ecology and evolution feed back onto each other. Starting from a mechanistic understanding of links between ecology and evolution at the level of processes, mechanisms, and patterns, I outline key challenges to understanding eco-evolutionary feedbacks: timescales, interactions within and between scales of organisation, and spatial structure (Chapter 1). Then, using a hierarchical networks perspective, I ask the question: how does explicitly accounting for interactions at the level of genes and spatial structure by modelling gene-regulatory (Chapter 2) and spatial networks (Chapters 3--6) respectively, impact eco-evolutionary feedbacks? Therefore, in this thesis, I developed individual-based models that provide proof-of-concept for how relaxing standard assumptions of additivity in genetic architecture and simplified spatial structures impact eco-evolutionary feedbacks. Specifically, I develop models of range expansion into an external environmental gradient and represent the genetic architecture of local adaptation and dispersal as gene-regulatory networks (Chapter 2). I also develop an eco-evolutionary model of a host-parasite system in which parasite virulence and host dispersal may evolve (Chapters 3--6) representing realistic spatial network structure: terrestrial and riverine aquatic landscapes are modelled by random-geometric graphs and optimal channel networks, respectively. By analysing these models, I show that explicitly accounting for gene-regulatory and spatial networks does indeed change ecological and evolutionary patterns relative to simplified models. Specifically, I find that range expansions into external environmental gradients create conditions in which gene-regulatory networks that are more sensitive to mutation, hence adapting faster to novel conditions, end up at the range front (ecology to evolution; eco-to-evo). The evolution of greater sensitivity to mutation in turn leads to accelerating range expansion dynamics (evo-to-eco). This result cannot be obtained in simple additive architectures, indicating that when ecology and evolution are on similar timescales and evolution is mutation limited, the structure of the genotype-to-phenotype map must be taken into account. At the other extreme, in the case of spatial networks when ecology is faster than evolution (Chapters 3--5), I show that terrestrial and riverine aquatic spatial networks distribute densities of hosts and parasites in a characteristic way. This leads to both demographic and genetic (kin) structuring of the interacting partners. Genetic structure as captured by parasite relatedness leads to characteristic patterns of virulence evolution (eco-to-evo) in terrestrial and riverine aquatic landscapes (Chapter~3) and demographic structure (Chapter 4) drives its co-evolution with host dispersal (Chapter~5). Differences in evolved parasite virulence also further impact the distributions of hosts and parasites in space (Chapter~3; evo-to-eco). These results demonstrate that understanding classical eco-evolutionary mechanisms (e.g. kin selection) in terms of the structure of spatial networks is a way forward to a more general theory of eco-evolutionary feedbacks in complex landscapes. Finally, for standing genetic variation limited co-evolution of host dispersal and parasite virulence during co-range expansions into spatial networks (Chapter 6), I show for the range of parameters explored that range expansions create conditions in which the evolutionary effects of spatial network structure are greatly reduced (eco-to-evo). This leads to the speed of co-range expansions being determined by spatial network structure alone (evo-to-eco). Therefore, my results call for a systematic study of the impact of biological system complexity on eco-evolutionary feedbacks at all levels: genes, individuals, populations, and communities explicitly accounting for space and eco-evolutionary timescales (General Discussion; Chapter 7)
Bertin, Nicolas. "D'une représentation statique à un modèle dynamique des réseaux d'interaction protéine-protéine". Montpellier 2, 2006. http://www.theses.fr/2006MON20124.
Texto completo da fonteTo further understand biological processes, it is important to consider gene functions in the context of complex molecular networks. I joined the lab of Marc Vidal in January 2001, in the midst of its effort to decipher at the scale of the proteome the complex network of protein-protein interactions in the metazoan model organism C. Elegans. To accomplish such a task, one has to first generate a physical resource of coding sequences that can be used in yeast two-hybrid (Y2H) screenings, as well as various other functional assays. In this respect, I participated in the development of a bioinformatics platform facilitating the cloning of 12,000 of the 19,000 predicted Open Reading Frames (ORFs) in C. Elegans (Nature Genetics 2003). This platform was subsequently used in two similar efforts to generate the ORFeome of the pathogen bacteria B. Melitensis (Genome Research 2004a) (96% of the predicted ORFs of B. Melitensis were cloned) and a first version of the human ORFeome containing approximately 8,000 ORFs (Genome Research 2004b). Using the C. Elegans ORFeome resource, a huge team effort led to the generation of one of the first metazoan interactomes, uncovering the network formed by 5,500 protein-protein interactions (Science 2004). My involvement in that project was the development of a bioinformatics pipeline allowing an efficient acquisition of the data generated by the high-throughput Y2H screenings, as well as tools to integrate this dataset with the huge body of transcriptional and phenotypic data available. I have demonstrated that currently known protein-protein interactions cover only a small portion of the full interactomes (Nature Biotechnology 2005). Nevertheless, they can be used as a scaffold on which other functional information can be overlaid to improve our understanding of key biological processes. By creating tools to bring together genetic, transcriptional and functional data into the interactome, I participated in the discovery of new functional links between genes expressed in the germline of C. Elegans (Current Biology 2002), as well as the uncovering of new components involved in the TGF-beta signaling pathway (Molecular Cell 2004), the RNAi machinery (Science 2005) and C. Elegans embryogenesis (Nature 2005). All of these studies generated testable hypotheses that strengthened the implication of those new functional links in each of the biological processes investigated. The integration of functional datasets can also be used to reveal emergent properties of biological networks. Taking advantage of the wealth of proteomic, transcriptional and genetic data available for S. Cerevisiae, I have shown that the genetic robustness of the yeast is linked to the modular and hierarchical nature of the topology of its interactome (Nature 2004 and recent submission PloS Biology). While the static nature of current interactomes can be partially overcome by integrating transcriptome and interactome data in unicellular organisms (Nature 2004 and recent submission to PloS Biology), such approaches remain limited for multicellular organisms such as C. Elegans. To decipher the dynamics of the worm interactome, one has to determine the localizations of the expression of its genes in space and in time. Therefore, I joined a high-throughput genome wide expression localization project. The originality of this project resides in a standardized and high-throughput data acquisition of in vivo gene reporter assays allowing the gathering of both spatial as well as temporal expression patterns for nearly 2,000 C. Elegans promoters. This new biological map, the "localizome", will be used to not only refine the current static interactome and define tissue-specific interactomes, but also to gain a system-level understanding of gene regulation during the post-embryonic development of C. Elegans (under consideration in Nature)
Marois-Blanchet, François-Christophe. "Le rôle de la régulation transcriptionnelle dans l'évolution des réseaux d'interaction protéine-protéine". Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28445/28445.pdf.
Texto completo da fonteEvolution by gene duplication is considered one of the most important mechanisms of evolutionary innovation. What is less known and highly debated is the relative role of the divergence of transcriptional regulation and the divergence of protein coding sequence in the evolution of molecular networks. We developed a method aimed at evaluating the role of transcriptional regulation in the divergence of protein-protein interactions among duplicated genes in the budding yeast Saccharomyces cerevisiae. Our results demonstrate that our approach can be used effectively to test if divergence of protein-protein interaction profiles can be explained by the divergence of transcriptional regulation or the divergence of coding sequences. We found evidence supporting different scenarios, whereby expression regulation has a large effect, no effect or little effect on protein-protein interaction profiles of paralogous proteins. Our method can be brought to large scale and help elucidate the importance of gene transcriptional regulation in evolution of complex cellular networks.
Diss, Guillaume, e Guillaume Diss. "Architecture et évolution des réseaux d'interactions protéines-protéines : exploration de la carte génotype-phénotype". Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25454.
Texto completo da fonteTableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015
La question des bases structurales du phénotype et de sa variation est une des questions les plus anciennes de la biologie. Le paradigme actuel stipule que le phénotype est exprimé à partir du génotype au travers de réseaux moléculaires dont l’architecture structure l’information génétique. Cette description mécanistique de la carte génotype-phénotype implique que c’est par la perturbation de l’architecture de ces réseaux que des variations génotypiques mènent à des modifications du phénotype. Les protéines constituant le principal vecteur de l’information génétique, comprendre la carte génotype-phénotype requiert de comprendre comment les variations génotypiques perturbent l’architecture du réseau d’interactions protéines-protéines. Au cours de cette thèse, nous avons développé une méthode permettant d’étudier chez la levure Saccharomyces cerevisiae l’impact de la délétion des gènes sur les interactions entre protéines. Nous avons appliqué cette méthode à l’étude des mécanismes moléculaires de la robustesse par lesquels le réseau d’interactions protéines-protéines filtre les variations génotypiques pour préserver le phénotype. Nous avons mis au jour un mécanisme de compensation fonctionnelle entre gènes paralogues basé sur la compensation des interactions protéines-protéines et expliquant un lien entre génotype et phénotype qui était mal compris jusqu’alors. En outre, en appliquant notre méthode à l’identification des régulateurs de la Protéine Kinase A, nous avons approfondi les connaissances sur la façon dont les maîtres régulateurs coordonnent les processus cellulaires et maintiennent l’homéostasie, une propriété distribuée de la robustesse. Ces résultats, et ceux qui seront produits à l’avenir par l’application de cette méthode, promettent une meilleure compréhension des mécanismes moléculaires par lesquels l’information génétique est transmise du génotype au phénotype, condition essentielle à la compréhension du vivant et de son évolution.
La question des bases structurales du phénotype et de sa variation est une des questions les plus anciennes de la biologie. Le paradigme actuel stipule que le phénotype est exprimé à partir du génotype au travers de réseaux moléculaires dont l’architecture structure l’information génétique. Cette description mécanistique de la carte génotype-phénotype implique que c’est par la perturbation de l’architecture de ces réseaux que des variations génotypiques mènent à des modifications du phénotype. Les protéines constituant le principal vecteur de l’information génétique, comprendre la carte génotype-phénotype requiert de comprendre comment les variations génotypiques perturbent l’architecture du réseau d’interactions protéines-protéines. Au cours de cette thèse, nous avons développé une méthode permettant d’étudier chez la levure Saccharomyces cerevisiae l’impact de la délétion des gènes sur les interactions entre protéines. Nous avons appliqué cette méthode à l’étude des mécanismes moléculaires de la robustesse par lesquels le réseau d’interactions protéines-protéines filtre les variations génotypiques pour préserver le phénotype. Nous avons mis au jour un mécanisme de compensation fonctionnelle entre gènes paralogues basé sur la compensation des interactions protéines-protéines et expliquant un lien entre génotype et phénotype qui était mal compris jusqu’alors. En outre, en appliquant notre méthode à l’identification des régulateurs de la Protéine Kinase A, nous avons approfondi les connaissances sur la façon dont les maîtres régulateurs coordonnent les processus cellulaires et maintiennent l’homéostasie, une propriété distribuée de la robustesse. Ces résultats, et ceux qui seront produits à l’avenir par l’application de cette méthode, promettent une meilleure compréhension des mécanismes moléculaires par lesquels l’information génétique est transmise du génotype au phénotype, condition essentielle à la compréhension du vivant et de son évolution.
The question of the structural bases of the phenotype and of its evolution is one of the oldest questions in biology. The present paradigm states that the phenotype is expressed from the genotype through molecular networks, the architecture from which structures genetic information. This mechanistic description of the genotype-phenotype map implies that it is through by perturbing of the architecture of these networks that genotypic variations lead to phenotypic modifications. Since proteins are the main vector of genetic information, understanding the genotype-phenotype map requires the understanding of how genotypic variations perturb the architecture of the protein interaction network. In the course of this thesis, we developped a methodology that allows to study the impact of gene deletions on the interactions between proteins in the yeast Saccharomyces cerevisiae. We applied this method to the study of the molecular mechanisms of robustness by which the protein interaction network filters genotypic variations to preserve the phenotype. We uncovered un mechanism of functional compensation between paralogous genes that is based on protein-protein interaction compensation and that explains the poorly understood link between genotype and phenotype. Moreover, we applied our method to the identification of regulators of Protein Kinase A and deepened our knowledge of how master regulators coordinate cellular processes and maintain homeostasis, a distributed property of robustness. These results, and the ones that will be produced in the future by applying this method, promise a better understanding of the molecular mechanisms through which genetic information is transmitted from the genotype to the phenotype, an essential condition for the understanding of life and its evolution.
The question of the structural bases of the phenotype and of its evolution is one of the oldest questions in biology. The present paradigm states that the phenotype is expressed from the genotype through molecular networks, the architecture from which structures genetic information. This mechanistic description of the genotype-phenotype map implies that it is through by perturbing of the architecture of these networks that genotypic variations lead to phenotypic modifications. Since proteins are the main vector of genetic information, understanding the genotype-phenotype map requires the understanding of how genotypic variations perturb the architecture of the protein interaction network. In the course of this thesis, we developped a methodology that allows to study the impact of gene deletions on the interactions between proteins in the yeast Saccharomyces cerevisiae. We applied this method to the study of the molecular mechanisms of robustness by which the protein interaction network filters genotypic variations to preserve the phenotype. We uncovered un mechanism of functional compensation between paralogous genes that is based on protein-protein interaction compensation and that explains the poorly understood link between genotype and phenotype. Moreover, we applied our method to the identification of regulators of Protein Kinase A and deepened our knowledge of how master regulators coordinate cellular processes and maintain homeostasis, a distributed property of robustness. These results, and the ones that will be produced in the future by applying this method, promise a better understanding of the molecular mechanisms through which genetic information is transmitted from the genotype to the phenotype, an essential condition for the understanding of life and its evolution.
Poisson, Ariane. "Etude des fonctions de la Menin, oncosuppresseur impliqué dans les Néoplasies endocriniennes multiples de type 1 : analyse du réseau d'interactions protéiques et identification de nouveaux partenaires". Nice, 2005. http://www.theses.fr/2005NICE4003.
Texto completo da fonteBresso, Emmanuel. "Organisation et exploitation des connaissances sur les réseaux d'interactions biomoléculaires pour l'étude de l'étiologie des maladies génétiques et la caractérisation des effets secondaires de principes actifs". Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00917934.
Texto completo da fontePluchon, Pierre-François. "Exploration du réseau d’interactions impliqué dans la maintenance génomique de l'Archaea hyperthermophile Pyrococcus abyssi". Thesis, Brest, 2012. http://www.theses.fr/2012BRES0070/document.
Texto completo da fonteDNA replication, recombination and repair are central and essential mechanisms in all cells. Highly efficienthigh-fidelity chromosome replication is vital for maintaining the integrity of the genetic information and for theavoidance of genetic disease. Archaeal replisome is described as simplified version of the eukaryotic system.However, DNA repair is still enigmatic, as many essential repair proteins have not been identified in Archaealgenomes. The question of DNA repair is even more puzzling while many Archaea lives under extremetemperature that promotes DNA instability and catalyses nucleobase damages. Thus, HyperthermophilicArchaea (HA) must have solved a molecular problem (spontaneous loss of native DNA structure) at amagnitude that mesophilic organisms do not face. A highly adapted DNA maintenance system must operate inorder to maintain DNA integrity. Those mechanisms and their possible coordination with DNA replication arestill unknown. Here, I report the first protein-protein interaction network of genomic maintenance in HA. Using AP-MSapproach we identified new protein complexes potentially implicated in DNA replication, recombination andrepair of HA P. abyssi. Topological analysis of the network highlighted both known and unknown partners ofessential and conserved protein of genomic maintenance. From the network emerges multifunctional clustersintegrating both replication and recombination proteins and revealing new aspects of the transcriptionmachinery. I also provide experimental confirmation of some of the interactions we detected.I propose that the interactions we observe reflects the interplay between recombination and replicationmachineries that likely interfaces with regulatory elements involved in the control of the DNA damageresponse, as shown by the identification of a new factors, presumably involved in the coupling of DNArecombination and DNA synthesis at the replication fork
Kamenova, Stefaniya. "Réseaux d'interactions, biodiversité et services éco-systémiques en milieu agricole : que nous apprennent les coléoptères carabiques ?" Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2319.
Texto completo da fonteBiological control is one of the main ecosystem services provided by biodiversity in agroecosystems. Communities of beneficial insects, hosted by agricultural areas exhibit high levels of species and functional diversity, and their biology and life history traits are well described today. These communities are therefore an excellent model for addressing issues of fundamental and applied interest about mechanisms at the origin of biodiversity and its impacts on the supply of ecosystem services. In this thesis, we develop an original combination of advanced molecular approaches and more traditional methods in order to elucidate trophic interaction network within the community of carabid beetles in agricultural areas. The carabid beetles can significantly contribute to the service of biological control, but their contribution and beneficial conditions are difficult to assess because of their opportunistic and plastic feeding behavior. A without a priori investigation of carabid diet at community level in a typical agricultural landscape reveals a resource partitioning between groups of species. Additional experimental studies in laboratory conditions indicate that interspecific competition could be the mechanism generating this partitioning. From a fundamental point of view, these results suggest a preponderance of deterministic processes (niche partitioning) compared to neutral processes (environmental stochasticity) to explain the coexistence of species. From an applied point of view, the importance of the resource in structuring carabid communities provides a potential lever of action for the development of efficient management strategies optimizing carabid function as crop auxiliaries
Chettaoui, Chafika. "Mécanismes de conception de modèles discrets fondés sur la théorie des jeux pour l'étude des réseaux d'interactions biologiques : application à la migration métastasique". Phd thesis, Université d'Evry-Val d'Essonne, 2007. http://tel.archives-ouvertes.fr/tel-00419193.
Texto completo da fonte