Siga este link para ver outros tipos de publicações sobre o tema: Reperfusion injury.

Artigos de revistas sobre o tema "Reperfusion injury"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Reperfusion injury".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Khalil, Alizan A., Farah A. Aziz e John C. Hall. "Reperfusion Injury". Plastic and Reconstructive Surgery 117, n.º 3 (março de 2006): 1024–33. http://dx.doi.org/10.1097/01.prs.0000204766.17127.54.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Grinyo, J. M. "Reperfusion injury". Transplantation Proceedings 29, n.º 1-2 (fevereiro de 1997): 59–62. http://dx.doi.org/10.1016/s0041-1345(96)00715-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Quinones-Baldrich, William J., e Deborah Caswell. "Reperfusion Injury". Critical Care Nursing Clinics of North America 3, n.º 3 (setembro de 1991): 525–34. http://dx.doi.org/10.1016/s0899-5885(18)30722-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Royston, David. "Reperfusion injury". Baillière's Clinical Anaesthesiology 2, n.º 3 (setembro de 1988): 707–27. http://dx.doi.org/10.1016/s0950-3501(88)80014-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zimmerman, Barbara J., e D. Neil Granger. "Reperfusion Injury". Surgical Clinics of North America 72, n.º 1 (fevereiro de 1992): 65–83. http://dx.doi.org/10.1016/s0039-6109(16)45628-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Reichek, Nathaniel, e Kambiz Parcham-Azad. "Reperfusion Injury". Journal of the American College of Cardiology 55, n.º 12 (março de 2010): 1206–8. http://dx.doi.org/10.1016/j.jacc.2009.10.048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Flaherty, John T., e Myron L. Weisfeldt. "Reperfusion injury". Free Radical Biology and Medicine 5, n.º 5-6 (janeiro de 1988): 409–19. http://dx.doi.org/10.1016/0891-5849(88)90115-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fishbein, M. C. "Reperfusion injury". Clinical Cardiology 13, n.º 3 (março de 1990): 213–17. http://dx.doi.org/10.1002/clc.4960130312.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ma, Yulong, Yanhui Cai, Doutong Yu, Yuting Qiao, Haiyun Guo, Zejun Gao e Li Guo. "Astrocytic Glycogen Mobilization in Cerebral Ischemia/Reperfusion Injury". Neuroscience and Neurological Surgery 11, n.º 3 (21 de fevereiro de 2022): 01–05. http://dx.doi.org/10.31579/2578-8868/228.

Texto completo da fonte
Resumo:
Glycogen is an important energy reserve in the brain and can be rapidly degraded to maintain metabolic homeostasis during cerebral blood vessel occlusion. Recent studies have pointed out the alterations in glycogen and its underlying mechanism during reperfusion after ischemic stroke. In addition, glycogen metabolism may work as a promising therapeutic target to relieve reperfusion injury. Here, we summarize the progress of glycogen metabolism during reperfusion injury and its corresponding application in patients suffering from ischemic stroke.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bodwell, Wendy. "Ischemia, reperfusion, and reperfusion injury". Journal of Cardiovascular Nursing 4, n.º 1 (novembro de 1989): 25–32. http://dx.doi.org/10.1097/00005082-198911000-00005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Songur, Çetin Murat. "Ischemia-Reperfusion Injury". Kosuyolu Heart Journal 18, n.º 2 (3 de agosto de 2015): 89–93. http://dx.doi.org/10.5578/khj.5774.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Yellon, Derek M., e Derek J. Hausenloy. "Myocardial Reperfusion Injury". New England Journal of Medicine 357, n.º 11 (13 de setembro de 2007): 1121–35. http://dx.doi.org/10.1056/nejmra071667.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Souidi, Naima, Meaghan Stolk e Martina Seifert. "Ischemia–reperfusion injury". Current Opinion in Organ Transplantation 18, n.º 1 (fevereiro de 2013): 34–43. http://dx.doi.org/10.1097/mot.0b013e32835c2a05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Misinski, Maureen. "Myocardial Reperfusion Injury". Critical Care Nursing Clinics of North America 2, n.º 4 (dezembro de 1990): 651–62. http://dx.doi.org/10.1016/s0899-5885(18)30785-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

AMBROSIO, G. "Myocardial reperfusion injury". European Heart Journal Supplements 4 (março de 2002): B28—B30. http://dx.doi.org/10.1016/s1520-765x(02)90013-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ko, Wilson, Arthur S. Hawes, W. Douglas Lazenby, Steven E. Calvano, Yong T. Shin, John A. Zelano, Anthony C. Antonacci, O. Wayne Isom e Karl H. Krieger. "Myocardial reperfusion injury". Journal of Thoracic and Cardiovascular Surgery 102, n.º 2 (agosto de 1991): 297–308. http://dx.doi.org/10.1016/s0022-5223(19)36563-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Huber, Thomas. "Ischaemia-reperfusion injury". Journal of Vascular Surgery 31, n.º 5 (maio de 2000): 1081–82. http://dx.doi.org/10.1067/mva.2000.105513.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Boyle, Edward M., Timothy H. Pohlman, Carol J. Cornejo e Edward D. Verrier. "Ischemia-Reperfusion Injury". Annals of Thoracic Surgery 64, n.º 4 (outubro de 1997): S24—S30. http://dx.doi.org/10.1016/s0003-4975(97)00958-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Olds, Robin. "Ischaemia–reperfusion injury". Pathology 31, n.º 4 (1999): 444. http://dx.doi.org/10.1016/s0031-3025(16)34766-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tilney, N. L., D. Paz, J. Ames, M. Gasser, I. Laskowski e W. W. Hancock. "Ischemia-reperfusion injury". Transplantation Proceedings 33, n.º 1-2 (fevereiro de 2001): 843–44. http://dx.doi.org/10.1016/s0041-1345(00)02341-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Dorweiler, Bernhard, Diethard Pruefer, Terezia B. Andrasi, Sasa M. Maksan, Walther Schmiedt, Achim Neufang e Christian F. Vahl. "Ischemia-Reperfusion Injury". European Journal of Trauma and Emergency Surgery 33, n.º 6 (20 de novembro de 2007): 600–612. http://dx.doi.org/10.1007/s00068-007-7152-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

McIntyre, Kenneth E. "ISCHAEMIA-REPERFUSION INJURY". Shock 12, n.º 3 (setembro de 1999): 246. http://dx.doi.org/10.1097/00024382-199909000-00019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

AL-QATTAN, M. M. "Ischaemia-Reperfusion Injury". Journal of Hand Surgery 23, n.º 5 (outubro de 1998): 570–73. http://dx.doi.org/10.1016/s0266-7681(98)80003-x.

Texto completo da fonte
Resumo:
Prolonged ischaemia sometimes occurs in replantation and free flap surgery. The re-establishment of circulatory flow to the ischaemic tissue leads to a cascade of events which augments tissue necrosis. This paper reviews the pathophysiology of this ischaemia-reperfusion injury and discusses different methods to modulate this injury.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

YAMAZAKI, NOBORU. "Myocardial reperfusion injury." Nihon Naika Gakkai Zasshi 81, n.º 7 (1992): 1119–24. http://dx.doi.org/10.2169/naika.81.1119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Widgerow, Alan D. "Ischemia-Reperfusion Injury". Annals of Plastic Surgery 72, n.º 2 (fevereiro de 2014): 253–60. http://dx.doi.org/10.1097/sap.0b013e31825c089c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Grace, P. A. "Ischaemia-reperfusion injury". British Journal of Surgery 81, n.º 5 (maio de 1994): 637–47. http://dx.doi.org/10.1002/bjs.1800810504.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Anaya-Prado, Roberto, Luis H. Toledo-Pereyra, Alex B. Lentsch e Peter A. Ward. "Ischemia/Reperfusion Injury". Journal of Surgical Research 105, n.º 2 (junho de 2002): 248–58. http://dx.doi.org/10.1006/jsre.2002.6385.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Pizarro, Gonzalo. "Ischemia Reperfusion Injury". JACC: Basic to Translational Science 8, n.º 10 (outubro de 2023): 1295–97. http://dx.doi.org/10.1016/j.jacbts.2023.08.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Karmazyn, Morris. "The 1990 Merck Frosst Award. Ischemic and reperfusion injury in the heart. Cellular mechanisms and pharmacological interventions". Canadian Journal of Physiology and Pharmacology 69, n.º 6 (1 de junho de 1991): 719–30. http://dx.doi.org/10.1139/y91-108.

Texto completo da fonte
Resumo:
Reperfusion in the heart represents an important form of tissue injury, particularly in view of the emerging importance of reperfusion protocols aimed at salvaging the ischemic myocardium. Both the manifestations and the causes of reperfusion injury are multifold. With respect to the former, reperfusion injury can be characterized by various abnormalities including development of arrhythmias, contractile dysfunction, ultrastructural damage as well as various defects in intracellular biochemical homeostasis. The mechanisms underlying myocardial reperfusion injury are equally complex, but most likely involve numerous processes acting in concert resulting in eventual cell death. In this review, a description of various such potential mechanisms, which represent primary interests of the author, are presented. An understanding of these mechanisms has led to novel pharmacological approaches towards the protection of the reperfused myocardium. For instance, several lines of evidence implicate enhanced eicosanoid, and in particular prostaglandin, synthesis in reperfusion injury, since (1) such injury is involved with enhanced prostaglandin biosynthesis, (2) inhibition of prostaglandin synthesis with various nonsteroidal anti-inflammatory drugs attenuates injury, and (3) exogenous prostaglandins increase injury. Another intracellular process that is emerging as an important contributor to reperfusion injury in the heart is the Na+/H+ exchanger, which is most likely activated upon reperfusion. Such activation would lead to numerous intracellular disturbances including the increased synthesis of prostaglandins and elevated intracellular Ca2+ concentrations. Indeed, inhibitors of Na+/H+ exchange such as amiloride have been shown to effectively inhibit reperfusion injury. Reperfusion is also associated with depressed mitochondrial function, particularly in subsarcolemmal mitochondria which are rapidly injured as a result of both ischemic and reperfusion conditions. Preservation of mitochondrial function with dissimilar approaches such as carnitine or phosphatidylcholine administration markedly reduces reperfusion injury. A nonpharmacological novel approach towards the protection of the reperfused myocardium represents the induction of so-called stress or heart shock proteins in the heart prior to initiation of ischemia and reperfusion. The salutary effect of the heat shock response may be dependent not on the heat shock proteins themselves, but through the concomitant elevation of tissue catalase content resulting in enhanced detoxification of intracellular hydrogen peroxide. Thus reperfusion injury represents numerous complex events such that manipulations aimed at limiting such injury can be initiated to prevent specific defects with the ultimate goal of an overall reduction in cell damage.Key words: heart, ischemia, reperfusion, prostaglandins, leukotrienes, Na+/H+ exchange, subsarcolemmal mitochondria, interfibrillar mitochondria, heat shock proteins, tissue protection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Linas, S. L., P. F. Shanley, D. Whittenburg, E. Berger e J. E. Repine. "Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys". American Journal of Physiology-Renal Physiology 255, n.º 4 (1 de outubro de 1988): F728—F735. http://dx.doi.org/10.1152/ajprenal.1988.255.4.f728.

Texto completo da fonte
Resumo:
The contribution of neutrophils to reperfusion injury after ischemia is not known. To determine the effect of neutrophils on the function of ischemic kidneys, we added purified human neutrophils during perfusion of isolated ischemic or nonischemic rat kidneys. Reperfusion of ischemic kidneys with neutrophils caused a distinct morphological lesion of vascular endothelial and smooth muscle cells and more functional injury than reperfusion with buffered albumin alone; with neutrophils, glomerular filtration rate (GFR) was 113 +/- 7 microliter.min-1.g-1, tubular sodium reabsorption (TNa) was 72 +/- 2%; without neutrophils, GFR was 222 +/- 18 microliter.min-1.g-1; TNa was 90 +/- 2%; both P less than 0.01 vs. reperfusion with neutrophils. In contrast, addition of neutrophils did not injure control kidneys, unless the neutrophil activator, phorbol myristate acetate, was also added. Two experiments suggested that O2 metabolites contributed to neutrophil-mediated injury to ischemic kidneys. First, reperfusion of ischemic kidneys with O2 metabolite-deficient neutrophils from a patient with chronic granulomatous disease did not cause more injury than reperfusion with buffered albumin alone. Second, simultaneous addition of the O2 metabolite scavenger, catalase, prevented the GFR and TNa decreases caused by neutrophils but did not decrease injury in the absence of neutrophils. We conclude that neutrophils by an O2 metabolite-dependent mechanism contribute to ischemia-reperfusion injury in the isolated perfused kidney.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Geng, Xiaokun, Jie Gao, Alexandra Wehbe, Fengwu Li, Naveed Chaudhry, Changya Peng e Yuchuan Ding. "Reperfusion and reperfusion injury after ischemic stroke". Environmental Disease 7, n.º 2 (2022): 33. http://dx.doi.org/10.4103/ed.ed_12_22.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

GARCIADORADO, D., e H. PIPER. "Postconditioning: Reperfusion of “reperfusion injury” after hibernation". Cardiovascular Research 69, n.º 1 (janeiro de 2006): 1–3. http://dx.doi.org/10.1016/j.cardiores.2005.11.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sakuma, Tsutomu, Keiji Takahashi, Nobuo Ohya, Osamu Kajikawa, Thomas R. Martin, Kurt H. Albertine e Michael A. Matthay. "Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection". American Journal of Physiology-Lung Cellular and Molecular Physiology 276, n.º 1 (1 de janeiro de 1999): L137—L145. http://dx.doi.org/10.1152/ajplung.1999.276.1.l137.

Texto completo da fonte
Resumo:
To study the mechanisms responsible for ischemia-reperfusion lung injury, we developed an anesthetized rabbit model in which the effects of lung deflation, lung inflation, alveolar gas composition, hypothermia, and neutrophils on reperfusion pulmonary edema could be studied. Rabbits were anesthetized and ventilated, and the left pulmonary hilum was clamped for either 2 or 4 h. Next, the left lung was reperfused and ventilated with 100% oxygen. As indexes of lung injury, we measured arterial oxygenation, extravascular lung water, and the influx of a vascular protein (131I-labeled albumin) into the extravascular space of the lungs. The principal results were that 1) all rabbits with the deflation of the lung during ischemia for 4 h died of fulminant pulmonary edema within 1 h of reperfusion; 2) inflation of the ischemic lung with either 100% oxygen, air, or 100% nitrogen prevented the reperfusion lung injury; 3) hypothermia at 6–8°C also prevented the reperfusion lung injury; 4) although circulating neutrophils declined during reperfusion lung injury, there was no increase in interleukin-8 levels in the plasma or the pulmonary edema fluid, and, furthermore, neutrophil depletion did not prevent the reperfusion injury; and 5) ultrastructural studies demonstrated injury to both the lung endothelium and the alveolar epithelium after reperfusion in deflated lungs, whereas the inflated lungs had no detectable injury. In summary, ischemia-reperfusion injury to the rabbit lung can be prevented by either hypothermia or lung inflation with either air, oxygen, or nitrogen.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kang, K. J. "Mechanism of hepatic ischemia/reperfusion injury and protection against reperfusion injury". Transplantation Proceedings 34, n.º 7 (novembro de 2002): 2659–61. http://dx.doi.org/10.1016/s0041-1345(02)03465-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Rubin, B. B., S. Liauw, J. Tittley, A. D. Romaschin e P. M. Walker. "Prolonged adenine nucleotide resynthesis and reperfusion injury in postischemic skeletal muscle". American Journal of Physiology-Heart and Circulatory Physiology 262, n.º 5 (1 de maio de 1992): H1538—H1547. http://dx.doi.org/10.1152/ajpheart.1992.262.5.h1538.

Texto completo da fonte
Resumo:
Skeletal muscle ischemia results in energy depletion and intracellular acidosis. Reperfusion is associated with impaired adenine nucleotide resynthesis, edema formation, and myocyte necrosis. The purpose of these studies was to define the time course of cellular injury and adenine nucleotide depletion and resynthesis in postischemic skeletal muscle during prolonged reperfusion in vivo. The isolated canine gracilis muscle model was used. After 5 h of ischemia, muscles were reperfused for either 1 or 48 h. Lactate and creatine phosphokinase (CPK) release during reperfusion was calculated from arteriovenous differences and blood flow. Adenine nucleotides, nucleosides, bases, and creatine phosphate were quantified by high-performance liquid chromatography, and muscle necrosis was assessed by nitroblue tetrazolium staining. Reperfusion resulted in a rapid release of lactate, which paralleled the increase in blood flow, and a delayed but prolonged release of CPK. Edema formation and muscle necrosis increased between 1 and 48 h of reperfusion (P less than 0.05). Recovery of energy stores during reperfusion was related to the extent of postischemic necrosis, which correlated with the extent of nucleotide dephosphorylation during ischemia (r = 0.88, P less than 0.001). These results suggest that both adenine nucleotide resynthesis and myocyte necrosis, which are protracted processes in reperfusing skeletal muscle, are related to the extent of nucleotide dephosphorylation during ischemia.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Pemberton, M., G. Anderson, V. Vĕtvicka, D. E. Justus e G. D. Ross. "Microvascular effects of complement blockade with soluble recombinant CR1 on ischemia/reperfusion injury of skeletal muscle." Journal of Immunology 150, n.º 11 (1 de junho de 1993): 5104–13. http://dx.doi.org/10.4049/jimmunol.150.11.5104.

Texto completo da fonte
Resumo:
Abstract Reperfusion of ischemic tissue is associated with tissue injury greater than that resulting from ischemia alone. C activation has been hypothesized to mediate the so-called ischemia/reperfusion injury through both membrane attack and C5a-dependent recruitment of neutrophils to sites of C3 fixation on the endothelium via C3 receptors. Adherence of neutrophils is preconditional to expression of their deleterious effects, which are central to the pathophysiology of ischemia/reperfusion injury. This study was designed to evaluate the effect of inhibition of C activation on ischemia/reperfusion injury using a soluble and truncated recombinant human CR1 (sCR1) molecule, a "tail-less" form of the membrane C3b/C4b receptor (CD35) that functions as a regulator of C activation. Capillary perfusion and leukocyte adherence to venular endothelium were measured after reperfusion in a mouse cremaster muscle model that allowed microscopic video observation of microcirculatory changes. Infusion i.v. with sCR1 before a 4-h period of ischemia and during a 3-h subsequent period of reperfusion prevented the increase in leukocyte adherence to venular endothelium seen in controls, and enhanced the number of reperfusing capillaries by 55%. Trypan blue staining showed an increase in muscle cell viability from 11 to 50% in mice receiving sCR1 as compared to controls. Tests of blood samples from mice infused with sCR1 demonstrated nearly complete inhibition of the mouse alternative pathway of C activation, but no detectable loss of the mouse classical pathway of C activation. It was concluded that C activation in this model of skeletal muscle injury is likely to be due to the alternative pathway, and that inhibition of C activation during reperfusion inhibits leukocyte adherence to blood vessel walls and protects the capillary microcirculation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Goldfarb, R. D., e A. Singh. "GSH and reperfusion injury." Circulation 80, n.º 3 (setembro de 1989): 712–13. http://dx.doi.org/10.1161/circ.80.3.2766517.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Mitsos, S. E., J. C. Fantone, K. P. Gallagher, K. M. Walden, P. J. Simpson, G. D. Abrams, M. A. Schork e B. R. Lucchesi. "Canine Myocardial Reperfusion Injury". Journal of Cardiovascular Pharmacology 8, n.º 5 (setembro de 1986): 978–88. http://dx.doi.org/10.1097/00005344-198609000-00015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Opie, Lionel H. "Mechanisms of reperfusion injury". Current Opinion in Cardiology 6, n.º 6 (dezembro de 1991): 864–67. http://dx.doi.org/10.1097/00001573-199112000-00002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ostadal, Petr. "What is ‘reperfusion injury’?" European Heart Journal 26, n.º 1 (30 de novembro de 2004): 99. http://dx.doi.org/10.1093/eurheartj/ehi029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tosaki, Arpad, Anne Hellegouarch e Pierre Braquel. "Cicletanine and Reperfusion Injury". Journal of Cardiovascular Pharmacology 17, n.º 4 (abril de 1991): 551–59. http://dx.doi.org/10.1097/00005344-199104000-00005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Weight, S. C., P. R. F. Bell e M. L. Nicholson. "Renal ischaemia-reperfusion injury". British Journal of Surgery 83, n.º 2 (fevereiro de 1996): 162–70. http://dx.doi.org/10.1046/j.1365-2168.1996.02182.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rushing, G. D., e L. D. Britt. "Reperfusion Injury After Hemorrhage". Annals of Surgery 247, n.º 6 (junho de 2008): 929–37. http://dx.doi.org/10.1097/sla.0b013e31816757f7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Clark, W. M. "Cytokines and reperfusion injury". Neurology 49, Issue 5, Supplement 4 (1 de novembro de 1997): S10—S14. http://dx.doi.org/10.1212/wnl.49.5_suppl_4.s10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Obermaier, Robert, Oliver Drognitz, Stefan Benz, Ulrich T. Hopt e Przemyslaw Pisarski. "Pancreatic Ischemia/Reperfusion Injury". Pancreas 37, n.º 3 (outubro de 2008): 328–32. http://dx.doi.org/10.1097/mpa.0b013e31816d9283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Nosé, Peter S. "Cytokines and Reperfusion Injury". Journal of Cardiac Surgery 8, S2 (março de 1993): 305–8. http://dx.doi.org/10.1111/j.1540-8191.1993.tb01329.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Frank, Anja, Megan Bonney, Stephanie Bonney, Lindsay Weitzel, Michael Koeppen e Tobias Eckle. "Myocardial Ischemia Reperfusion Injury". Seminars in Cardiothoracic and Vascular Anesthesia 16, n.º 3 (23 de fevereiro de 2012): 123–32. http://dx.doi.org/10.1177/1089253211436350.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Weyker, Paul D., Christopher A. J. Webb, David Kiamanesh e Brigid C. Flynn. "Lung Ischemia Reperfusion Injury". Seminars in Cardiothoracic and Vascular Anesthesia 17, n.º 1 (5 de outubro de 2012): 28–43. http://dx.doi.org/10.1177/1089253212458329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Bascom, John U., Peter Gosling e Bashir A. Zikria. "Hepatic ischemia-reperfusion injury". American Journal of Surgery 184, n.º 1 (julho de 2002): 84. http://dx.doi.org/10.1016/s0002-9610(01)00838-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Soler-Soler, J. "Trimetazidine and reperfusion injury". European Heart Journal 22, n.º 11 (1 de junho de 2001): 975. http://dx.doi.org/10.1053/euhj.2000.2529.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia